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Abstract— This paper is concerned with the problems of
finite horizon H, filtering, prediction and fixed-lag smoothing
for linear continuous-time systems with multiple delays. By
applying an innovation approach in Krein space, a necessary
and sufficient condition for the existence of an H.. filter,
predictor or smoother is derived. The estimator is given in terms
of the solution of a partial differential equation with boundary
conditions, The innovation appreach in Krein space enables
us to convert the very complicated deterministic estimation
problem into a stochastic one to which a simple H» innovation
analysis method can be adapted. The result of this paper
demonstrates that the Krein space approach is powerful in
solving otherwise very complicated H, problems. Our result
is in contrast with many recent sufficient conditions for H.,
filtering of delay systems.

I. INTRODUCTION

Linear estimation has important applications in many fields
of science and engineering and has attracted significant
interest in the past 50 years; see, e.g. [6], [11], [16], [10]. It
is usually classified based on the performance criterion under
which the estimation problem is addressed. I, estimation
has gained popularity in the past decades [17], [19] which is
to find a linear estimator such that the energy gain between
the noise inputs and the estimation error is less than a
prescribed level. As compared to the minimum variance
estimation, the H, filter does not require the knowledge
of the statistics of noise signals. In addition, an H,,, filter is
also less sensitive than the > counterpart to uncertainty in
system parameters [19].

The H, filtering problem for continuous-time systems
has been addressed in [17] and the solution is given in
terms of the existence of a bounded solution to a Riccati
differential equation. Recently, the A, prediction and fixed-
lag smoothing problems for linear continuous-time systems
without delays were investigated in [21]. For linear time-
invariant systems with state delays, a sufficient condition has
been given in [5] for the H, filtering in the infinite horizon
case using a linear matrix inequality (LMI) approach. For
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time-varying systems with delayed measurement, the Hg
filtering has been addressed in [18] which gives a sufficient
condition in terms of a Riccati differential equation in the
finite horizon case and an algebraic Riccati equation in the
infinite horizon case.

In this paper we consider linear time-varying systems with
known delays in both the state and output equations. The
problem to be investigated is the design of an estimator such
that a given H,, performance is achieved in the finite horizon
case. We first discuss the H,, fixed-lag smoothing problem.
By converting it into an indefinite quadratic optimization
problem, an innovation approach in Krein space [7] is
proposed to give a necessary and sufficient condition for the
existence of an H.. smoother in terms of a bounded solution
of a Riccati type of partial differential equation. A smoother
is then constructed. The case of filtering is in fact a special
case of the smoothing. It can be seen from the derivation of
the result that the Krein space innovation approach is very
powerful in dealing with complicated problems like the Hg
fixed-lag smoothing problem for delay systems. Our result
can be considered as the H,, counterpart of the Hs result
in {13] even though a different derivation method is applied.
We further show that the Hy, prediction problem can be
approached in a similar way and hence a necessary and
sufficient condition is obtained. As special cases, solutions
to the H,, fixed-lag smoothing and prediction for systems
without delays are also given.

II. PROBLEM STATEMENTS

We consider the linear time-varying system with multiple
time delays described by

k
3 @ut)a(t - ha) + T()ult), (1)

i(t) =
i=0
k

y(t) = Y Hitx(t — k) +v(t), @
i=0
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H{t) = L{t)z(t), €)]

where z(t) € R", u(t) € R", y(t) € R™, v(t) €
RE™ and z(t) € RP represent the state, input noise, mea-
surement output, measurement noise and the signal to be
estimated, respectively and ®;(¢), ['(£), H;(¢) and L(t) are
bounded time-varying matrices with appropriate dimension.
It is assumed that the input and measurement noises are
deterministic and are from L»[0,T| where T > 0 is the
time-horizon. The scalar quantities 0 = hy < Ay < -+~ < by

. A
are known constant time delays of the system. Denote h =
maz{hg, -, hy}. The initial condition z(s)}(—kh < s < 0)
is unknown.

The general H, estimation problem including filtering,
prediction and fixed-lag smoothing is stated as:

e H.. Fixed-lag Smoothing and filtering: Given the
desired noise attenuation level v > 0, the smoothing lag
9 > 0 and the observation {y(s), 0 < s < t}, find an
estimate 2(t,8) of z(t—@), if it exists, such that the following
inequality is satisfied:

sup
{=()1-ngagouv}0

Jo 15(6,0) — 2(t = 0)] [2(t,6) — 2(t — 6)]
SOOI e(t)dt + [ w (Bu(t)dt + [ o' (to(t)dt
<7 )

where “' 7 stands for the transposition and II,, t € [k, 0]
is a given positive definite matrix function which reflects the
relative uncertainty of the initial state z(t),—h <t < 0
about the origin to the input and measurement noises.

We note thar when 6 = 0, the above defines an Hy,
filtering problem.

e H,, Prediction: Given the desired noise attenuation
level ~ > 0, the prediction lead 8 > 0 and the observation
{y(s), 0 € s <t—0}, find an estimare 3(t — 8, —0) of (),
if exists, such that the following inequality is satisfied:

sup
{I(S)|—h5s5mu,v}#ﬂ

T [t —0,-8) ~ 2(8)] (¢ ~ 8,~8) — x(t)] dt

I8, eI 2(0dt + [T @ult)de+ f; 0V (vl
(5)

<7
where I1; has the same meaning as in the fixed-lag smooth-
ing. A
1I1. H,. SMOOTHING
In view of (4), we define

72 [ ’

T
z’(s)H;lm(s)ds-!—/ u'(s)u(s)ds
-k 0

T
+/OT v’(s)v(s)ds—'y‘z/; v) (s)v.(s)ds

i) T
= / w’(s)H;lm(s)ds+f o' (s)u(s)ds
0

-h

+/0T [i((ss))]' [16n 4921}} [;ﬁz((ss))}ds’
6

where

v.(8) = 2(5,8) ~ z(s— 0}
= 3(s,6)— L(s—8)x(s - 8),

and v.(s} =0 for s < 6.

It follows from [7] that an estimate #(£,0)(f < t <
T} that achieves (4) exists if and only if: 1) the above
quadratic function Js{T'") has a minimum JZ" with respect
tou(t) (0 £t <T)and z(t) (—h £t < 0); and 2) a
#(t,8) (8 £t <T) can be chosen such that the minimum
is positive for all y(-).

0

A. Stochastic system in Krein space

In association with system (1)>-(3) and the cost function
(6), we introduce the stochastic system below.

k
3 ®u(t)x(t — ki) + D(t)ult),

x(t) = (8)
i=0
k

y() = Y Hit)x(t — k) + v(t), )
i=0

Z(t,0) = LE-Nx(t—06)+v.(t), t=2¢ (10)

where the initial state x(7) (—h < 7 < 0) and u(t), v(t)
and v.(¢) ! are mutually uncorrelated white noises with zero
means and known covariance matrices IT,, §,(t), Q. (¢) and
Qu. (1), with Qu(t) = Ir, Qu{t) = I, for t > 0 and

0, t< @
sz (t) =
-2, t>6.

Note that 2(¢, #) can be considered as a ’fictitious’ measure-
ment at time t for the linear combination L(t — 8)x{t — &).
Denote

y(t), 0<t<@
NCE an
’ [zb(;(t;)] t20

which is the measurement of the stochastic system (8)-(10)
in an indefinite linear space. It follows from (11) that for
0<t<d
3
yat) =Y Hilt)x{t — k) + v(2),

i=0

(12)

"Whenever the Krein Space elements [7] and the Euclidean space ele-
ments satisfy the same set of constrains, we shall denote them by the same
letters with the former identified by bold faces and the latter by normal
faces.
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and fort > @,

y:(t) = [Z Hit)xelt = b )] [: (tt))} (13)
Lit—0)x(t—#6) z
The measurements up to time ¢ are collected as
{y:(s), 0<s<t}. (14)

Similar to the case in Hilbert space, define §,(s,0) the
projection [7] of ¥, (s) onte L{y.(r), < s}. It should be
noted that unlike in Hilbert space a projection in Krein space
may not exist, If the projection ¥.(s, 0) exists, we define the
innovation of the observation y,(s) as

£ y.(s) = 3.(5,0). (15)

Note that w_(s) is in fact the prediction error of the
observation. Obviously, the linear space L{y.(s), s < t}
is equivalent to L{w(s), s <t} [11].

w,(8)

Lemma 1: Suppose that there exist the projections %(¢, 6)
and %(t, h;) of x(t — #) and x{t — k), respectively, onto
the linear space of £{y.(s), s < t}. Then, the innovation
w(t), defined by (15), can be given as

w,(t) =

Y1) — 3 Hlt)i(t, ho), G<t<o
i=0
(16)
[_y(t) ] {z Hi{t)x(t: )] >0
2601 |7l - 0)x(t,0)
and the innovation covariance matrix
Qu. (1) 2 {w.(t), w.()) )
is given by
Ly, 0<t<f
Qut)=9 1 as)
[ 0 "'7211:} t26.

B. Sufficient and necessary condition for the existence of
an H,, smoother

Theorem I: Consider the system (1)-(3) and the associated
performance criterion (4). Then, for a given scalar v > 0, a
smoother 2{t,8)(0 < t < T) that achieves {(4) exists if and
only if

o Bt N exists for 0 <t < T,

o Z{t, by exists for <t <Tand 0 < i <k,
where Z(t,0} and Z(t, h;) are respectively given from the
projections of x(t — 8) and x(t — h;) onto {y.(s), s<t}.
In this situation, a suitable H,, smoother (central estimator)
Z(t,8) is given by

3(t,0) = L(t — 0)3(t, ). (19)

C. Calculation of H,, estimator 3t
Define the cross-covariance matrix of the estimates of
x(t — 1) and x(t — 72) as
.P(t, T1, 1'2)

(x(t = m1) = X(t,m1), X(t —72) = X(t,72)),
20)

where 4 > 0, 72 > 0 and %(¢,73;) (f = 1,2) is the
projection of x(t — 7} onto £{y.(s), s <t} y.{(s)is as
in (11). It is obvious that P(t, 7y, 72) = P(t,72,71). We
have the following result

&

Theorem 2: The matrix P(t,7,72) (m =0, 722> 0) as
defined in (20) is the solution to the following Riccati type
of partial differential equation and boundary conditions

BP(t, 71, ‘TQ)
ot

OP(t, 7, 72) 6‘P(t, T1,T2)
871 87’2

=- Z P(t, 7y, hi)H{()H () P(t, hj, 72)
t,7=0

+472P(t, 7, 0)L (t — B)L(t — 8)P(t,8, ),

@n

6P(f-,‘f1,0) t T1,0)
ot on

ZP(t 1, he) B (1)

i=0
k
~ 3" P(t, 1, k) Hi(t)H; () P(t, by, 0)
1,j=0
+~v2P(t, 7, 0) L' (t — O)L(t — 8)P(t,8,0), (22)

MQ_ Z‘I’ (1)P(t, he,0)
k

+zp(t=01hi)¢,i(t)l + r(t)r(t),
=0

k
= 3" P(t,0,h)H{(£)H;(t)P(t, h3,0)

t.3=0

+y72P(t,0,6)L'(t — #)L{t — B)P(t,6,0), (23)
where L(t — ) =0 for ¢t < 6 and
P(t,0,s) = P{t,s,0). (24)

In addition, the initial value P(0,7,72), 0 S 7,2 < h is
as )

P(0,71,72) = (x(—m1), X(—72)) = 05, 6(11 — 72). (25)

5737

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 21:32 from IEEE Xplore. Restrictions apply.



Theorem 3: Consider the system (1)-(3) and the associated
performance criterion (4). Given the desired noise attenuation
v > 0 and the smoothing lag @ > @, the H,, fixed-lag
smoothing problem of (4} is solvable if and only if there
exists a bounded matrix solution P(t, 7, R} (0 < i < k)
for 0 < £ < Tand &0 € 7 € hmar, Where Mg, =
maz{h,0} = max{hg, --,hy, 8}, 10 the partial differential
equations (21)-(23).

In this case, the central estimator (¢, 8) is given by

’é(ts 9) = L(t - e)j(ta 9)1 (26)
where Z(t,¢) is computed as
ox(t,7) OE(t,T)
ot or
k
[y(t) - Z-Hi(t)i(ta hi)jl , (27
i=0 :
3$(t 0)

= K(t,7,t) x

ch (O)E(t, hs) + K (2.0,8) x

[y(t) - Z Hi(t)j(t&hi)] :

(28)
7 where

k
3 Pty 7, hi) Hi(tY,
i=Q
and initial valve £(0,7) =0 for 7 > 0.
Remark 1: By setting v —c in (4}, 2(¢, 8) becomes an H,
estimator which is the same as in [13] for H> optimal filtering

K(t,1,t) {29)

in linear systems with time delays with Q1(¢) = T(¢)T7(¢)
and Qy(t) = I,
IV. H., PREDICTION
In view of (5), we define
Je(T)
0 T
= f 2 ()1 x(s)ds +f w' (s)u(s)ds +
-k 0

T-0
/ v'(s)v(s)ds
o

T
—7_2/ v, (s — Nv,(s — O)ds
0

/0 o' ()1 (s)ds + jT ' {(8)u{s)ds
—k s]

f L [ ][] e

Il

and v(s) = 0 for s < 0, v%(s) = v(s — 8) and +¥(s) =
v (s — ).

In view of (2) and (31), define the following measurement
and fictitious measurement:

k

) = Y HYtx(t - hd)y+0°1), t20
i=0

24,00 = L{E)=z(t) +v3(8), (32)

where 3°(t) = y(t — &), HX(t) =
#(t —60,—0) and kY = h; + 6.

According to the discussion in the last section,
it —-8,-0) = 2°(t,0)0 < ¢t < T) that achieves (5)
exists if and only if {7]: 1) Fp{T) has a minimum .,‘7“““,
with respective u(f) (0 <t < T) and =z(t) (-h <t < 0)
and 2) 2°(¢,0) can be chosen such that J3™ is positive for
all 4°(-).

H(t - 8), 2°(t,0) =

Similar to the case as in last section, we introduce the
stochastic system below.

(1) Z ()t — h;) + I"(t)u(t) (33)
z=B

¥t Z HY(O)x(t — k) +v°(t), t2,6034)
i=0

2°(t,0) = L()x(t) + (), 3%

where the initial state x{7) {(~h < 7 < 0) and (t),
vO(t) (¢t > ) and vO(t) are mutually uncorrelated white
noises with zero means and known covariance matrices [,
Qu{t), Quo(t) and Qe {2) with Qu(2) = I, Que (t) = —¥*Ip
for t > 0 and

0, t<@
Quolt) =

Ty t2=0.

Define the cross-covariance matrix of the estimates of
x(t — 7)) and x{t — 72) as

P(ts T1: 72)

S (x(t-m)—%(t, ), xX(t—T2) - k(t, 7)),

(36)

where 71 2 0, 72 2 0 and %(¢, 7;) (z = 1, 2) is the projection
of x(t—7;) onto E{yz(s), s < t}. The innovation of ¥%(s),
denoted by w“(t) = y2(t) — ¥%(t,0), where $%(¢,0) is the
projection of yU(t} onto C{y‘z’(s), 3 < t}.

Then the innovation covariance matrix of w2(t) , denoted

Goy Y Que® = (wl(t), wl()) , is computed by
where —21,, 0<t<d
w(s=6) 2 Hs6,-8) - (o = o 5] e e
= i{(s—8,-8)— L(s)z(s) (3D 0 -1 =
5738

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 21:32 from IEEE Xplore. Restrictions apply.



Theorem 4: The matrix P(t, 7, m2) (r1 20, 72 2 0) of
{36) is the solution to the following Riccati type of partial
differential equation and boundary conditions

OP(t, 71, 72)

6P(t:Tl=T2) ap(t:TlaTQ)
+
37'2

ot 81'1

k
= - Z P(t, 11, hs + 0)H'i(t — O)H;(t - 6)
i,j=0
xP(t,h; +6,7m2) + v 2P(t, 7,00 L (t) L(t)
x P(t,0,72), (38)
OP(t,71,0) + dP(t,m,0)
ot an

k
= 3 Pty h)®:(tY
i=0

k
~ 3" Pty by + O)H (¢ — 0)H;(t — )

i,7=0
X P(t,h; + 0,0) + 72 P(t, 71, 0)L'(t)L(t)
x P(t,0,0), (39)
OP(t,0,0) =~ _
—p— = !-Z:;@‘(t)}j(t’ hi, 0) +
k
3 P20, h)8:(t)" + TN ()
=0
' k
= Y P{t,0.h; + O)H';(t — 0)H,(t — 6)
i,5=0
xP(t,h; +6,0) + v~ 2P(,0,0)L'(t)
x L(t)P(t,0,0), (40)
where H;(t -~ 8) =0 for t < 6 and
- P(t,0,8) = P(t,5,0). (41)

In addition, the initial value P(0,71,72), 0 < 71,72 < R is
as

PO, 11, 7m2) = {x(—71), X(—72)) =TI_- 8(m1 —72). (42)
Now we are in the position to present the main result of
this section.

Theorem 5: Constder the system (1)-(3) and the associated
performance criterion (5). Given the desired noise attenuation
7 > 0, the prediction time lead § > 0, the H,, prediction
problem of (5) is solvable if and only if there exists a
bounded matrix solution P(¢, 7, h; + 8) (0 € ¢ € k) for
0<t<Tand0 <7 <hY,,,, where h%,.. = mazx{ho +
6, -, hy + 6}, to the partial differential equations (38)-{40).

In this case, a suitable predictor 2(t — &, —8) = 2°(£,0) is
given by

£0(¢,0) = L(t)&(t,0), (43)
where Z(¢,0) is computed from
8x(t,7) 9t T) .
6t 67’ - A(t’: T t) X
k
i=0
9i(t,0) o .
5 = Z; @i ()E(E, h) + K (8,0,) x
k
[y(t —8) = > Hit— 0)&(t, h + e)] :
i=0
{45)
with '
k
K(t,7,t) =Y P(t,7,hi + 0} H:(t — 8, (46)

i=0
and initial vatue £(0,7) =07 > 0.

Remark 2: Theorem 5 presents a solution to the Hyg
prediction for linear time delay systems. In the case when
all the delays don’t exist, the result gives a solution to the
H,. prediction problem for linear time-varying systems.

V. CONCLUSIONS

In this paper we have studied the H., estimation problem
for linear time-varying systems with multiple delays. A
necessary and sufficient condition for the existence of an
estimator is obtained in terms of a partial differential equation
with boundary conditions. The approach applied in this paper
is the innovation analysis in Krein space.

Due to the duality of the control and filtering, we believe
that the presented results can be extended to the H,, control
for time delay systems to give a necessary and sufficient
condition,
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