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Abstract 

In this paper, a new approach is presentedfor robust filtering 
of a linear discrete-time signal by applying fictitious noise. 
Modeling errors, in both the numerator and denominator of 
the transfer functions, are parameterized by using random 
variables with zero mean and known covariance. The robust 
performance is obtained by minimizing the mean square 
estimation error over all of the random parameter and 
noise. To derive a robust estimator, the uncertainties in 
the model are incorporated into two mutually uncorrelated 
fictitious noises with zero means. The covariances of the 
fictitious noises are computed by using two formulas that 
are presented in this paper. An illustrative example shows 
the effectiveness of our approach. 

Index Terms -Robust, Filtering, Stochastic, Uncertainty, 
Innovation, Fictitious Noise. 

I. INTRODUCTION 
Input signal filtering (deconvolution) is concerned with 

the estimation of a signal through a measured output. This 
problem has many applications including seismology, speech 
processing and equalization to numerical differentiation 
( for example, see [ I l l ,  [IS] and the references therein). 
Much attention has been paid to  this problem that is based 
on Kalman filtering formulation or polynomial method [4], 
[9], [IO], [14], [15]. In most cases, the parameters of the 
systems and the statistics of the noises are assumed to he 
known exactly a priori. However, these details are often 
not known precisely and the associated values may be time 
varying due to a perturbation in the transmission medium, 
linearization and model reduction. Generally, these values 
may be deterministic in some case and stochastic in other 
cases [I]. In this way, the performance of the optimal 
filtering that is associated with some nominal system will 
degrade. 
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The averaged minimum mean square error (MMSE) 
approach has been used previously in the literature [16], 
[171. The estimators are obtained by minimizing the averaged 
mean square error. The criterion takes into account not 
only the effect, hut also the likehood of different modeling 
errors. It offers a simpler design for the estimator than any 
of the minimax schemes. It also avoids the drawbacks of 
the worst-case designs. This paper is aim to study the robust 
input signal filtering problem by applying the averaged 
MMSE approach, where the parametric uncertainties in the 
numerators and denominators of the transfer function are 
modeled as white noise [I], [19], [ZO], [21]. Such models 
of the uncertainties are encountered in  many areas of 
application such as signal processing [ I ] ,  [22], control [21], 
[231, nuclear fission and heat uansfer, population models, 
etc. (201. By applying the technique of fictitious noise [18], 
the robust filtering is convened into a standard optimal 
filtering problem for a system with fictitious noises. Two 
formulas that are used for computing the covariances of the 
fictitious noises are presented. 

11. PROBLEM STATEMENT 

The source signal, u( t ) .  and the noise corrupted measue- 
ment, y ( t ) ,  are described respectively by [I], [91, [41 

[D(q-')  + Dt(q-')] 4 t )  = [C(q-') + Ct(q-')] e( t ) ,  (1) 
[ A W )  + 'M-',] Y ( 0  = [B(q-') + Bt(q-')] - k) 

+ [P(q-')  + Pdq-')] 40. 
(2) 

The polynomials D(q-'), C(q-') ,  A(q-'), B(q-') and 
P(q-') are pre-specified, and they have the form 

X ( q - 1 )  = zo + q q - 1  + . . . + Z,=q-"". (3) 

The polynomials Dt(q-'), Ct(q-'), At(q-') ,  B,(q-') and 
Pt(q-') represent the time-varying uncertainties, and they 
have the form 

X,(q- ' )  = so(t) +s1(t)q- '  + " ' z n S ( t ) q - " = .  (4) 
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In addition, we have 

111. ROBUST FILTERING 

In this section, we derive the robust estimator by using a 
projection formula and an innovation analysis approach. It is 
shown that the robust estimation involves computing two co- 
variance matrices of fictitious, one spectral factorization and 
one polynomial equation. This is slightly more complicated 
than the standard optimal design. 

A. Rcfitious Noise 
Note (4). ( I )  and (2) are re-written as 

D(q-')u(t)  = C(q- ' )e( t )  + (12) 

(13) 
A(q-*)y(t) = B(q-')u(t - k) + P(q- ' )a( t )  + vo(t), 

where 

eo( t )  = -D,(q-')u(t) + Ct(q-')e(t). (14) 
vo(t) = - A t ( q - ' ) y ( t )  + Bt(q-')u(t - k )  + Pt(q-')v(t). 

(15) . ,  
where A(t), B( t ) ,  p ( t ) ,  D(t )  and c( t )  are defined in (3. en( t )  and un i t )  are termed as fictitious noises. Substituting - .  . - 

(12) into (13) yields 
The following assumptions are made throughout this paper. 

Assumption Z.le(t), .it), &,(t) and Dc(t )  are niutuafly 
independent white noises, with zero means and known co- 

A D y ( t )  = DPv(*) + BCe(t - k, + 

+Duo(t), 
') 

(16) 
variances: 

uliere E and E are .the mathernatical expectations of the 
white noises and the uncertainties in the model, respectively 
It should be noted that Assumption 2.1 is a standard 
assumption (see [I], [I91 and the references therein). 

Assumption 2.2 The polynomials A(q-')  and D(q-')  are 
stable, i.e., all zeros of A(z-'),  D(z- ' )  are in I z I< 1. 

The problem to be addressed in this paper is stated as 
follows: 

Problem: From the data y(t), up to time t - m, a time- 
invariant estimator, C ( t  1 t - m), is sought. This estimator 
is designed to minimize the following averaged mean square 
error: 

where the operator q-' has been omitted in the polynomi- 
als A, B,  P, C and D. Now, we have the following results 
for the fictitious noises, which will play an important role in 
the design of the robust deconvolution. 

1. e(t), ~ ( t ) .  eo(t) and vo(t) are mutually uncorrelated. 
2. eo(t)  and vo(t) are white noises with zero means and 
certain covariances, which are computed by 

Theorem 3.1 

(17) 
A 

a 
up = E[eg(t)] = T ~ ( I  -TO)-', 

U: = E[vg(t)] = (.,"Xi + Xn)(l - Xo)-', (18) 

where 

1 
where 

v(t), and E is over Dc(t )  and d b p ( t ) .  

Remark 2.1 Since the white noises represented by e ( t )  
and v ( t )  are independent of Dc(t) and dbp(t), the objective 

is the mathematical expectation over e ( t )  and XI = - 2 R i  $z,=l(AA-DD*)-l 

dz 
,!?[(-BA, + ABt)(-BAt + ABt) , ]  ;, (22) 

function defined by (10) is ohviously equivalent to A' = - f ( A A , D D , ) - ~  
2RZ lz,=i 

E [u(t )  - q t  I t - m)]2 , (11) xE[( -BAt  + ABt)(-BA, + ABt),CC,u, + 
dz 

where E is the mathematical expectation over e( t ) ,  v ( t ) ,  (-PA, + APt)(-PAt + AP~)*DD,u~ , I_z ,  

Dc(t)  and d b p ( t ) .  (23) 
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where E is the mathematical expectation for D t ,  Ct, A t ,  Bt 
and Pt. 

Remark 3.1 Note that 'E(DtDt , ) ,  ,$DtCt,), E ( C t D t , )  
a_"d E(CtCt.) in (19)-(?0) can be computed by using Rd. 
E(AtAt*) ,  E(AtBt*), E(BtAt*) ,  E(BtBt*), E(AtPt*), 
E(&%*) and E(PtPt,) in (21)-(23) can be computed by 
using R,. Rd and R, are as defined in Assumption 2.1. 

B. Specld Factorization and ARMA Innovation Model 
From (16), since e ( t ) ,  v ( t ) ,  eo( t )  and uo( t )  are mutually 

uncorrelated, the specual densify of the output, y(t), is 
computed as 

[AA,DD,]-' W ( i , t - ' ) ,  (24) 

where 

W(z: i-') = BB,CC,u, + DD,PP,u,  
+ D D , ~ , O  + BB,U:. (25)  

The following assuniption in made. 
Assumption 3.1 The spectral W ( z ,  z - ' )  is definite positive 
on I i I= 1. 

Under Assumption Assumption 3.1, a unique stable' spec- 
tral factor p exists, with an order of 

ng = mas{nb + nc, n d  + na}  

and satisfies the following [I31 

U&* = w. 
(26) 

Or, equivalently, we have 

D E ( t )  = DPv(t)  + BCe(t - k )  + Beo(t - k )  
+Duo(t), (27) 

where i( t)  is white noise with variance uc. Combining (16) 
with (27) yields 

A D y ( t )  = /3-.(t). (28) 

It can easily be verified from the above equation that i ( t )  is 
the innovation of the observation. That is ~ ( t )  = y(t) - $ ( t  I 
t - l), and (28) is referred to as the "ARMA innovation 
model" [IO]. 

C. Derivation of the Estiriiator 
From the theory associated with projection [IO], the robust 

estimator, C ( t  I t - m). that minimize (IO) is in fact the 
projection of n ( t )  onto the linear space that is generated by 
the innovation, { ~ ( t  ~ m ) , ~ ( t  - m - 1);. . .}. Following this 
idea, one new derivation method for the estimator is given 
by applying a simple projection formula. It is different from 
the previous work in [91, [141. 

Lemma 3.1 Consider the models of the signal and mea- 
surement described by (1) and (2) and satisfying Assump- 
tions 2.1 and 3.1. The robust deconvolution estimate, C ( t  I 
t - m), that minimizes (IO) is given by 

(29) t ( t  I t - m )  = P-'(q-')L(q-')A(q-')y(t - m ) ,  

where the unknown polynomial L(q-')  has the form 

L(q-')  = R(q-') - S(q-'), (30) 
and 

R(q-') = T, + r,,-lq-l + . . . ~ " ~ - ~ q - ( n o - " - ~ ) ,  

s(q-') = so + s1q- '+ .  . . + Snd-iq-(",+) , (31) 

while the coefficients TS and si are expressed as 

ri = E{[Ce(t)  + eo(t)]i(t - i)}u;' 

si = x d , E [ t c ( t  - j ) E ( t  - m - i)]u;'. (32) 

The unknown polynomial L(q-') of the estimator in (29) 

n., 

j=i 

is solved in the following theorem. 

Theorem 3.2 Consider the system defined by (1) and (2) 
and satisfying Assumptions 2.1, 2.2 and 3.1. The robust state 
estimator is given by (29). Here, the unknown polynomial L 
with an order of max{n, - m - k ,  nd - 1) is, together with 
A.%, the unique solution to 

LBu, + M.Dt = zm+* [CC.B.u, + B.u:] , (33) 
where M ,  is a polynomial with an order of 

a M  = max(nb + a ,  + m+ k , n g )  - 1. (34) 
The minimal estimation emor is given by 

Ez2(t) , i ,  = %/ 1 DD, 1 [CC.u, +U:]  i d 2  1 

X 
1 

(35) 
Proof: Omitted. 

Remark 
(33) is a bilateral polynomial equation matrix. Note that 
D and p are stable. Thus, D and 0. have no common 
factors. This implies that the invariant polynomials of D are 
coprime with all of those of 4. and a solution always exists. 
Furthermore, it is easy to show that the solution is unique. 

IV. ILLUSTRATIVE EXAMPLE 
In this section, we present a numerical example to 

denionstrate the design of the robust estimator from the 
previous sections. Then the performance of the robust 
estimator is examined. 

Consider the models of the signal and measurement in (1) 
and (2), where 

D(q") = 1 - 0.8q-', Dt(q-') = d(t)q- ' ,  

C(q-1) = 1, Ct(q-1) = c(t)q-', 
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A(q-’) = 1: 

B(q-’) = 1 -0.6q-’, 

At(4-I)  = a(t)q-’ ,  

Bt(q-’) = bo( t )  + bi(t)g-’: 

P(q-1) = 1> Pt(q-’) = p ( t ) ,  !i = 1,  

where d ( t )  = c ( t )  = <(t) and a(t)  = bo(t)  = b t ( t )  = 
p ( t )  = < ( t ) .  < ( t ) .  < ( t ) ,  the system’s noises, e ( t ) ,  and 
the OhseNation’s noise. u( t ) ,  are assumed to he mutually 
independent white noises with zero means and variances of 
uc = 0.16, U< = 0.64, ue = 1 and U” = 0.81. 

Applying Theorem 3.1, we have 02 = 0.512 and U,” = 
9.0506. Then, the spectral factorization is defined as 

o,(l  +Pq-’)(l +oq) = -8.7956q-’ -8 .7956qt  18.2276, 

which is easily calculated by using 

B(q-’) = 1 - 0.7648q-I, uE = 11.5009. 

Having obtained the averaged spectral factorization, the 
robust estimator for filtering (m = 0) is obtained as 

C ( t  1 t)  = (1 - 0.7648q-’)-’L(q-’)y(t), 

where the polynomial L(q-’) is the solution to (33), which 
is given by 

L(q-’) = 0.1409. 

For the purpose of comparison, we give the nominal 
design. In this case, we do not care about the uncertainties 
Dtk-’), Cdq-’) ,  A&-’ ) ,  Bdq-’1 and Pdq-’). So we 
can assume that 

U< = U< = 0. 

Thus, the spectral density is 

Wo(q:q-’) = -1.248q-’ - 1.248q + 2.6884, 

and the spectral factorization is 

Po(q-’) = 1 - 0.6769q-’, U: = 1.8436. 

From (33). Lo(q-’) is solved as 

Lo(q-’) = 0.4922. 

The non-robust estimator for filtering (m = 0) is 

Co( t  I t )  = (1 - O.6769q1’)-’0.4922y(t) 

V. CONCLUSIONS 
In this paper, we have presented a new approach for 

robust filtering that is based on the stochastic description 
of the ermrs in the model, where both of the numerators 
and denonuuators of the transfer functions contain unknown 
stochastic parameters. By applying fictitious noises, the ro- 
bust estimation has been converted into a standard optimal 
H2 estimation problem. The covariances of the fictitious 
noises, which are the key to a robust estimator, have been 
computed by using two formulas developed in this paper. 
The model of the system that is considered is more general 
than the one in [I], where the model of the signal that is 
considered is assumed to he pre-specified and the observation 
contains white noise. The presented results can he extended 
to multivariable system (MIMO) with a similar discussion as 
in this paper and [9], which will be investigated separately. 
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