1,170 research outputs found

    Single-stranded genomic architecture constrains optimal codon usage

    Get PDF
    Viral codon usage is shaped by the conflicting forces of mutational pressure and selection to match host patterns for optimal expression. We examined whether genomic architecture (single- or double-stranded DNA) influences the degree to which bacteriophage codon usage differ from their primary bacterial hosts and each other. While both correlated equally with their hosts' genomic nucleotide content, the coat genes of ssDNA phages were less well adapted than those of dsDNA phages to their hosts' codon usage profiles due to their preference for codons ending in thymine. No specific biases were detected in dsDNA phage genomes. In all nine of ten cases of codon redundancy in which a specific codon was overrepresented, ssDNA phages favored the NNT codon. A cytosine to thymine biased mutational pressure working in conjunction with strong selection against non-synonymous mutations appears be shaping codon usage bias in ssDNA viral genomes

    General Rules for Optimal Codon Choice

    Get PDF
    Different synonymous codons are favored by natural selection for translation efficiency and accuracy in different organisms. The rules governing the identities of favored codons in different organisms remain obscure. In fact, it is not known whether such rules exist or whether favored codons are chosen randomly in evolution in a process akin to a series of frozen accidents. Here, we study this question by identifying for the first time the favored codons in 675 bacteria, 52 archea, and 10 fungi. We use a number of tests to show that the identified codons are indeed likely to be favored and find that across all studied organisms the identity of favored codons tracks the GC content of the genomes. Once the effect of the genomic GC content on selectively favored codon choice is taken into account, additional universal amino acid specific rules governing the identity of favored codons become apparent. Our results provide for the first time a clear set of rules governing the evolution of selectively favored codon usage. Based on these results, we describe a putative scenario for how evolutionary shifts in the identity of selectively favored codons can occur without even temporary weakening of natural selection for codon bias

    Assessing the exposure-response relationship of sleep disturbance and vibration in field and laboratory settings

    Get PDF
    Exposure to nocturnal freight train vibrations may impact sleep, but exposure-response relationships are lacking. The European project CargoVibes evaluated sleep disturbance both in the field and in the laboratory and provides unique data, as measures of response and exposure metrics are comparable. This paper therefore provides data on exposure-response relationships of vibration and sleep disturbance and compares the relationships evaluated in the laboratory and the field. Two field studies (one in Poland and one in the Netherlands) with 233 valid respondents in total, and three laboratory studies in Sweden with a total of 59 subjects over 350 person-nights were performed. The odds ratios (OR) of sleep disturbance were analyzed in relation to nighttime vibration exposure by ordinal logit regression, adjusting for moderating factors common for the studies. Outcome specific fractions were calculated for eleven sleep outcomes and supported comparability between the field and laboratory settings. Vibration exposure was significantly associated to sleep disturbance, OR = 3.51 (95% confidence interval 2.6–4.73) denoting a three and a half times increased odds of sleep disturbance with one unit increased 8 h nighttime log10 Root Mean Square vibration. The results suggest no significant difference between field and laboratory settings OR = 1.37 (0.59–3.19). However, odds of sleep disturbance were higher in the Netherlands as compared to Sweden, indicating unexplained differences between study populations or countries, possibly related to cultural and contextual differences and uncertainties in exposure assessments. Future studies should be carefully designed to record explanatory factors in the field and enhance ecological validity in the laboratory. Nevertheless, the presented combined data set provides a first set of exposure response relationships for vibration-induced sleep disturbance, which are useful when considering public health outcomes among exposed populations

    Effect of situational, attitudinal and demographic factors on railway vibration annoyance in residential areas

    Get PDF
    Railway induced vibration is an important source of annoyance among residents living in the vicinity of railways. Annoyance increases with vibration magnitude. However, these correlations between the degree of annoyance and vibration exposure are weak. This suggests that railway vibration induced annoyance is governed by more than just vibration level and therefore other factors may provide information to understand the wide variation in annoyance reactions. Factors coming into play when considering an exposure-response relationship between level of railway vibration and annoyance are presented. The factors investigated were: attitudinal, situational and demographic factors. This was achieved using data from field studies comprised of face-to-face interviews and internal vibration measurements (N = 755). It was found that annoyance scores were strongly influenced by two attitudinal factors: Concern of property damage and expectations about future levels of vibration. Type of residential area and age of the respondent were found to have an important effect on annoyance whereas visibility of the railway and time spent at home showed a significant but small influence. These results indicate that future railway vibration policies and regulations focusing on community impact need to consider additional factors for an optimal assessment of railway effects on residential environments

    Multicohort cross-sectional study of cognitive and behavioural digital biomarkers in neurodegeneration: the Living Lab Study protocol

    Get PDF
    INTRODUCTION AND AIMS: Digital biomarkers can provide a cost-effective, objective and robust measure for neurological disease progression, changes in care needs and the effect of interventions. Motor function, physiology and behaviour can provide informative measures of neurological conditions and neurodegenerative decline. New digital technologies present an opportunity to provide remote, high-frequency monitoring of patients from within their homes. The purpose of the living lab study is to develop novel digital biomarkers of functional impairment in those living with neurodegenerative disease (NDD) and neurological conditions. METHODS AND ANALYSIS: The Living Lab study is a cross-sectional observational study of cognition and behaviour in people living with NDDs and other, non-degenerative neurological conditions. Patients (n≥25 for each patient group) with dementia, Parkinson's disease, amyotrophic lateral sclerosis, mild cognitive impairment, traumatic brain injury and stroke along with controls (n≥60) will be pragmatically recruited. Patients will carry out activities of daily living and functional assessments within the Living Lab. The Living Lab is an apartment-laboratory containing a functional kitchen, bathroom, bed and living area to provide a controlled environment to develop novel digital biomarkers. The Living Lab provides an important intermediary stage between the conventional laboratory and the home. Multiple passive environmental sensors, internet-enabled medical devices, wearables and electroencephalography (EEG) will be used to characterise functional impairments of NDDs and non-NDD conditions. We will also relate these digital technology measures to clinical and cognitive outcomes. ETHICS AND DISSEMINATION: Ethical approvals have been granted by the Imperial College Research Ethics Committee (reference number: 21IC6992). Results from the study will be disseminated at conferences and within peer-reviewed journals

    Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1

    Get PDF
    SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al
    corecore