4,759 research outputs found

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach

    Get PDF
    In non-linear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of 'hold-out' or 'split-sample' data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. First, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance

    Determining Principal Component Cardinality through the Principle of Minimum Description Length

    Full text link
    PCA (Principal Component Analysis) and its variants areubiquitous techniques for matrix dimension reduction and reduced-dimensionlatent-factor extraction. One significant challenge in using PCA, is thechoice of the number of principal components. The information-theoreticMDL (Minimum Description Length) principle gives objective compression-based criteria for model selection, but it is difficult to analytically applyits modern definition - NML (Normalized Maximum Likelihood) - to theproblem of PCA. This work shows a general reduction of NML prob-lems to lower-dimension problems. Applying this reduction, it boundsthe NML of PCA, by terms of the NML of linear regression, which areknown.Comment: LOD 201

    The relationship between the systemic inflammatory response, tumour proliferative activity, T-lymphocytic and macrophage infiltration, microvessel density and survival in patients with primary operable breast cancer

    Get PDF
    The significance of the inter-relationship between tumour and host local/systemic inflammatory responses in primary operable invasive breast cancer is limited. The inter-relationship between the systemic inflammatory response (pre-operative white cell count, C-reactive protein and albumin concentrations), standard clinicopathological factors, tumour T-lymphocytic (CD4+ and CD8+) and macrophage (CD68+) infiltration, proliferative (Ki-67) index and microvessel density (CD34+) was examined using immunohistochemistry and slide-counting techniques, and their prognostic values were examined in 168 patients with potentially curative resection of early-stage invasive breast cancer. Increased tumour grade and proliferative activity were associated with greater tumour T-lymphocyte (P<0.05) and macrophage (P<0.05) infiltration and microvessel density (P<0.01). The median follow-up of survivors was 72 months. During this period, 31 patients died; 18 died of their cancer. On univariate analysis, increased lymph-node involvement (P<0.01), negative hormonal receptor (P<0.10), lower albumin concentrations (P<0.01), increased tumour proliferation (P<0.05), increased tumour microvessel density (P<0.05), the extent of locoregional control (P<0.0001) and limited systemic treatment (Pless than or equal to0.01) were associated with cancer-specific survival. On multivariate analysis of these significant covariates, albumin (HR 4.77, 95% CI 1.35–16.85, P=0.015), locoregional treatment (HR 3.64, 95% CI 1.04–12.72, P=0.043) and systemic treatment (HR 2.29, 95% CI 1.23–4.27, P=0.009) were significant independent predictors of cancer-specific survival. Among tumour-based inflammatory factors, only tumour microvessel density (P<0.05) was independently associated with poorer cancer-specific survival. The host inflammatory responses are closely associated with poor tumour differentiation, proliferation and malignant disease progression in breast cancer

    Black Holes in Modified Gravity (MOG)

    Get PDF
    The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass MM with two horizons. The strength of the gravitational constant is G=GN(1+α)G=G_N(1+\alpha) where α\alpha is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass MM, the parameter α\alpha and the spin angular momentum J=MaJ=Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published version in European Physics Journal

    Scheduling science on television: A comparative analysis of the representations of science in 11 European countries

    Get PDF
    While science-in-the-media is a useful vehicle for understanding the media, few scholars have used it that way: instead, they look at science-in-the-media as a way of understanding science-in-the-media and often end up attributing characteristics to science-in-the-media that are simply characteristics of the media, rather than of the science they see there. This point of view was argued by Jane Gregory and Steve Miller in 1998 in Science in Public. Science, they concluded, is not a special case in the mass media, understanding science-in-the-media is mostly about understanding the media (Gregory and Miller, 1998: 105). More than a decade later, research that looks for patterns or even determinants of science-in-the-media, be it in press or electronic media, is still very rare. There is interest in explaining the media’s selection of science content from a media perspective. Instead, the search for, and analysis of, several kinds of distortions in media representations of science have been leading topics of science-in-the-media research since its beginning in the USA at the end of the 1960s and remain influential today (see Lewenstein, 1994; Weigold, 2001; Kohring, 2005 for summaries). Only a relatively small amount of research has been conducted seeking to identify factors relevant to understanding how science is treated by the mass media in general and by television in particular. The current study addresses the lack of research in this area. Our research seeks to explore which constraints national media systems place on the volume and structure of science programming in television. In simpler terms, the main question this study is trying to address is why science-in-TV in Europe appears as it does. We seek to link research focussing on the detailed analysis of science representations on television (Silverstone, 1984; Collins, 1987; Hornig, 1990; Leon, 2008), and media research focussing on the historical genesis and current political regulation of national media systems (see for instance Hallin and Mancini, 2004; Napoli, 2004; Open Society Institute, 2005, 2008). The former studies provide deeper insights into the selection and reconstruction of scientific subject matters, which reflect and – at the same time – reinforce popular images of science. But their studies do not give much attention to production constraints or other relevant factors which could provide an insight into why media treat science as they do. The latter scholars inter alia shed light on distinct media policies in Europe which significantly influence national channel patterns. However, they do not refer to clearly defined content categories but to fairly rough distinctions such as information versus entertainment or fictional versus factual. Accordingly, we know more about historical roots and current practices of media regulation across Europe than we do about the effects of these different regimes on the provision of specific content in European societies

    Adverse drug reactions from psychotropic medicines in the paediatric population: analysis of reports to the Danish Medicines Agency over a decade

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prescribing of psychotropic medicines for the paediatric population is rapidly increasing. In attempts to curb the use of psychotropic medicine in the paediatric population, regulatory authorities have issued various warnings about risks associated with use of these products in childhood. Little evidence has been reported about the adverse drug reactions (ADRs) of these medicines in practice. As spontaneous reports are the main source for information about previously unknown ADRs, we analysed data submitted to a national ADR database. The objective was to characterise ADRs reported for psychotropic medicines in the Danish paediatric population over a decade.</p> <p>Findings</p> <p>All spontaneous ADR reports from 1998 to 2007 for children from birth to 17 years of age were included. The unit of analysis was one ADR. We analysed the distribution of ADRs per year, seriousness, age and gender of the child, suspected medicine and type of reported ADR. A total of 429 ADRs were reported for psychotropic medicines and 56% of these were classified as serious. Almost 20% of psychotropic ADRs were reported for children from birth up to 2 years of age and one half of ADRs were reported in adolescents, especially for antidepressants and psychostimulants. Approximately 60% of ADRs were reported for boys. Forty percent of all ADRs were from the category 'nervous and psychiatric disorders'. All but one ADR reported for children below two years were serious and two of these were fatal. A number of serious ADRs reported in children from birth up to 2 years of age were presumably caused by mothers' use of psychotropic medicines during pregnancy.</p> <p>Conclusion</p> <p>The high number of serious ADRs reported for psychotropic medicines in the paediatric population should be a concern for health care professionals and physicians. Considering the higher number of birth defects being reported greater care has to be given while prescribing these drugs for pregnant women.</p

    Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways

    Get PDF
    This work was supported by funding from the China Scholarship Council (awarded to ST), Leverhulme Trust (grant RGP-2013-351, awarded to MRE), BBSRC (grant BB/M001644/1 awarded to MRE; grant BB/M001032/1 awarded to JHS) and a Company of Biologists (Journal of Experimental Biology) Travelling Fellowship awarded to MZ. IB is supported by a postdoctoral fellowship from the Research Foundation–Flanders (FWO)
    corecore