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To the Editor: 

Recently, there has been growing interest in statistical algorithms designed for tackling intra-sample 

cellular heterogeneity (ISCH) in Epigenome-Wide Association Studies (EWAS) 1. Such algorithms can be 

broadly classified as either reference-based (if they use reference DNA methylation (DNAm) profiles of 

representative cell types) 2, or reference-free (if they don’t require such reference profiles) 3-6. Reference-

free methods can be further subdivided into those that use the phenotype of interest in the inference 

process (this includes algorithms such as Surrogate Variable Analysis (SVA) 4, 7 and RefFreeEWAS 3), and 

those that do not (e.g.  EWASher 5 and RUV 6). Comparisons between these different inference-paradigms 

is of paramount interest in order to inform the EWAS community on how best to approach the ISCH 

problem.   
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A recent study by Rahmani et al 8 presented a reference-free algorithm called ReFACTor, and suggested 

that it leads to improved estimates of cell type composition and power when compared to other 

competing algorithms. However, the approach on which ReFACTor is based could incorrectly remove the 

biological signal of interest if the latter is stronger than the variation associated with cell-type 

composition.  We confirmed this by applying  ReFACTor to additional datasets. Below we discuss key issues 

which any future methodological comparative study should pay particular attention to, to ensure robust 

and meaningful conclusions, which can then be used to guide the EWAS community. 

In principle, an advantage of a reference-free method like ReFACTor is that it is applicable to any tissue 

type. It is important therefore to assess performance in tissue types other than blood, because 

assumptions valid in one tissue type may not be valid in others. For instance, ReFACTor relies on the 

assumption that the top components of variation are associated with changes in cell-type composition, 

effectively using these components to construct variables that account for variations in cell-type. While 

this assumption may be valid for EWAS conducted in whole blood 9, the generality of it to other tissue 

types remains to be shown.  In essence, ReFACTor is similar in concept to Remove Unwanted Variation 

(RUV) 6 in that both select control genes that capture confounding variation. However, blind application 

of ReFACTor could lead to a substantial loss of power if control genes are misidentified as those carrying 

biological signal.  Although these problems represent an intrinsic limitation of any reference-free method, 

it will be particularly acute for methods like ReFACTor or EWASher 5, which do not use phenotype 

information from the outset. We used normal mammary epithelial and breast cancer cell-line data to 

define a gold-standard set of true positive features and a breast cancer tissue EWAS for the evaluation of 

several methods.  SVA 4 had a much better control of power,outperforming ReFACTor by as much as 70% 

(Table-1, Supplementary Data 1-2, Supplementary Software 1-2). While specificity is harder to estimate, 

the improved power of SVA over ReFACTor was at the expense of only a 10-20% lower specificity (Table 

1). ReFACTor’s loss of power in our cancer-tissue EWAS was due to the top components of variation 

correlating more strongly with disease status than with cell-type composition (Supplementary figure 1). 

Only lower-ranked components correlated with adipose cell content, which is the major source of cell-

type variation in breast tissue (Supplementary figure 1). This problem could in principle be circumvented 

by applying ReFACTor to the normal samples only, as suggested by Rahmani et al., but it remains to be 

tested on more datasets. Hence, application of a method like ReFACTor demands that one must carefully 

consider the tissue and biological context. 

A second key issue concerns the evaluation of a reference-free method in terms of modelling cell-type 

composition. In the case of ReFACTor, estimated components were added successively to a linear model, 

leading to an improvement in the fraction of variance explained (summarized with R2 values). To avoid 

the problem of overfitting we used a nested models likelihood ratio test (LRT) (or adjusted R2 values). We 

found little justification for the successive addition of components (Supplementary Methods, 

Supplementary Software 1-4, Supplementary Data 3, Supplementary figure 2). Alternatively, one could 

attempt to estimate the number of significant components of variation. In our hands entering such 

estimates into ReFACTor leads to a drop of as much as 20% in R2 values, resulting in reduced modeling 

performance, when compared to reference-based methods (Supplementary figures 3-4). This indicates 

that application of ReFACTor with all estimated components could lead to overfitting. We confirmed this 

further using training/test set partitions (Supplementary figure 5).   

Another issue is the use of a single or limited number of datasets with matched FACS data to benchmark 

a novel method against existing algorithms. In our experience, the complexity and unknown nature of the 



sources of variation in EWAS data requires many datasets to reach unbiased conclusions. To demonstrate 

this, we performed cell composition analysis for an independent whole blood dataset, as well as an 

extensive analysis encompassing five different in-silico mixture experiments, drawing on 1573 purified 

blood cell-types from over 6 different studies (Supplementary table 1). These analyses demonstrate the 

strength of Houseman’s reference-based method compared to ReFACTor (Supplementary figure 2, 

Supplementary figures 6-9). Further issues, including inappropriate choice of gold-standards in real data 

are discussed in Supplementary Methods. 

In summary, we suggest that future studies proposing novel methods ought to (i) provide comprehensive 

comparisons to existing algorithms, (ii) use biological scenarios and datasets that allow objective 

comparisons, and (iii) when applicable, include tissues other than blood. We provide some 

recommendations in the accompanying Supplementary Information and Supplementary table 2. Briefly, 

we recommend reference-based methods for scenarios where the composition of tissues is relatively well 

known, and reference-free methods like SVA or RefFreeEWAS when reference DNAm profiles are not 

available. We point out that our recommendations are based on currently available data sets and 

approaches, which may change as the field continues to evolve. 

 

Data Availability: All data analyzed is publicly available. See Supplementary Information for detailed 

accession numbers for all datasets analysed. 
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Tables 

 Unadj. SVA ReFACTor 
(k=6,ncp=6) 

ReFACTor 
(k=6,ncp=15) 

ReFACTor 
(k=10,ncp=10) 

ReFACTor 
(k=10,ncp=15) 

SE 
(P < 0.05) 

0.90 
(n=20876) 

0.83 
(n=19356) 

0.09  
(n=2066) 

0.02 
(n=412) 

0.02  
(n=410) 

0.02 
(n=410) 

SE 
(FDR < 0.05) 

0.89  
(n=20667) 

0.81 
(n=18743) 

0.04  
(n=835) 

≈0 
(n=23) 

≈0  
(n=13) 

≈0  
(n=13) 

SP 
(P < 0.05) 

0.53 
(n=16057) 

0.70 
(n=10274) 

0.62  
(n=12793) 

0.92 
(n=2603) 

0.95  
(n=1582) 

0.95 
(n=1582) 

SP 
(FDR < 0.05) 

0.58 
(n=14146) 

0.75 
(n=8436) 

0.84 
(n=5571) 

0.99 
(n=115) 

≈1 
(n=11) 

≈1 
(n=11) 

Table-1: Table comparing the relative sensitivity (SE) and specificity (SP) of ReFACTor (for 4 different choices of k and 

ncp parameters: ncp=15, estimated using RMT 7 as described in Supplemental Methods), to SVA and to an 

unadjusted analysis. Sensitivities and Specificites were estimated using a set of n=23258 true positives and 34078 

true negatives, respectively, and are shown at an unadjusted P < 0.05 and FDR corrected < 0.05. 

 


