PCA (Principal Component Analysis) and its variants areubiquitous techniques
for matrix dimension reduction and reduced-dimensionlatent-factor extraction.
One significant challenge in using PCA, is thechoice of the number of principal
components. The information-theoreticMDL (Minimum Description Length) principle
gives objective compression-based criteria for model selection, but it is
difficult to analytically applyits modern definition - NML (Normalized Maximum
Likelihood) - to theproblem of PCA. This work shows a general reduction of NML
prob-lems to lower-dimension problems. Applying this reduction, it boundsthe
NML of PCA, by terms of the NML of linear regression, which areknown.Comment: LOD 201