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Three-dimensional electrical impedance tomography 

Metherall, P.; Barber, D. C.; Smallwood, R. H.; Brown, B. H. 

Abstract 

The electrical resistivity of mammalian tissues varies widely (1-5) and is correlated with 

physiological function (6-8). Electrical impedance tomography (EIT) can be used to probe 

such variations in vivo, and offers a non-invasive means of imaging the internal conductivity 

distribution of the human body (9-11). But the computational complexity of EIT has severe 

practical limitations, and previous work has been restricted to considering image 

reconstruction as an essentially two-dimensional problem (10,12). This simplification can 

limit significantly the imaging capabilities of EIT, as the electric currents used to determine 

the conductivity variations will not in general be confined to a two-dimensional plane (13). A 

few studies have attempted three-dimensional EIT image reconstruction (14,15), but have not 

yet succeeded in generating images of a quality suitable for clinical applications. Here we 

report the development of a three-dimensional EIT system with greatly improved imaging 

capabilities, which combines our 64-electrode data-collection apparatus (16) with customized 

matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical 

applications, such as lung or brain imaging and diagnostic screening (8). 

 

 

Our methodology of two-dimensional (2D) EIT has been described in detail previously 

(10,12,17). Electrodes are positioned with equal spacing around the body to be imaged, thus 

defining a plane through the object. Voltage profiles are collected for all drive and receive 

electrode-pair combinations, and images are reconstructed as though the data were from a 2D 

object. In practice objects are three-dimensional (3D) and figure 1 shows 2D images obtained 

from such an object. These demonstrate that there are significant contributions to the image 

from off-plane conductivity changes. This means that, unlike 3D X-ray images which can be 

constructed from a set of independent 2D images, for 3D EIT it is necessary to reconstruct 

images from data collected over the entire surface of the object volume (12). 

 
Figure 1. Images showing how off-plane conductivity changes affect the reconstructed image in 2D EIT. As the 

conductivity change is moved further away 

from the electrode plane, its intensity in the 

image plane falls. But changes at distances 

equal to the tank (phantom) radius can still be 

resolved in the image plane. Radially offset 

changes show a similar effect, but with the 

further complication that off-plane changes are 

also shifted towards the centre of the image 

(13). All three images are displayed using the 

colour scale shown. The maximum values of 

conductivity change, expressed as a percentage, 

are given. METHODS. The images were 

produced using a 16-electrode system with 

interleaved drive and receive electrodes (16). 

Current is driven through a pair of electrodes 

into the body and potential differences are 

measured between the other electrode pairs. 

The current drive pair is then rotated and 

another set of voltage measurements is 

collected. The phantom, of diameter 230 mm, was filled with saline solution (conductivity sigma = 4 mS cm sup -
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1) and a reference (gref) voltage profile was collected. A small electrically insulating sphere of diameter 20 mm 

was then positioned as follows: a, in the electrode plane; b, at a distance of half the phantom radius from 

electrode plane; and c, at a distance of the phantom radius from electrode plane. Data sets (g) were recorded 

for each position, and the boundary voltage profile is then given by Delta gn = (g - gref)/gref. 

 

In this work we have taken a sample of the boundary surface using 64 electrodes placed 

around the object (32 independent current drive and 32 voltage receive channels), figure 2. 

Current is driven between pairs of adjacent drive electrodes. For each drive pair, a set of 

voltage measurements are recorded from receive electrode pairs. Three data collection 

strategies have been studied to investigate the performance of image reconstruction with 

different boundary voltage data set sizes. These sequences were derived from knowledge of 

limitations in the data collection instrumentation (16) and are shown in figure 2. 

 
Figure 2. Three-dimensional mesh, electrode 

position and pair configuration. To generate the 

reconstruction algorithm, a model representing the 

object volume is divided into 4,608 tetrahedral 

elements. These are configured as eight planes of 

576 elements (a). On nodes at the surface of the 

cylinder, the electrode positions are shown. This is 

based on a 64-electrode data collection system with 

32 independent current drive and voltage 

measurement (receive) electrodes. They are 

arranged in four planes of 16, with an interleaved 

configuration. METHODS. Three data collection 

sequences were studied with different data set sizes. 

The first (c) includes 56 drive and 56 receive pairs, 

formed between electrodes in the same plane and 

between adjacent planes (Delta gn = 3,136 

elements); the second (d) has only 32 in-plane 

receive pairs (Delta gn = 1,792 elements) and the 

third (e) has 32 drive and 32 receive pairs (Delta gn 

= 1,024 elements). The ordering of the data 

collection sequence is configured so that we have 

rotational symmetry. Current is first driven 

sequentially between pairs on all planes 

corresponding to drive segment 1, with a full set of voltage measurements collected for each drive pair. Current 

is then driven between pairs in segment 2, but the order of voltage measurements is shifted so that the 

geometrical relationship between the receive pairs and the drive pairs is identical for each segment (b). 

 

In order to generate the reconstruction algorithm, we have split the volume of interest into 

4,608 tetrahedral elements. A sensitivity matrix, based on the theorem by Geselowitz (18,19), 

can be derived which relates the magnitude of small changes in conductivity, Delta c = c - cref, 

and the resulting changes in potential differences Delta g = g - gref, on the boundary of the 

object, by equation 1. Although the sensitivity matrix S changes with the conductivity 

distribution and is therefore nonlinear, for small changes in c this can be ignored (12). We 

have argued elsewhere (20) that it is preferable to replace the perturbed data Delta g by a set 

of potential differences normalized to the reference vector gref and in this case equation (1) 

becomes equation 2 where Delta gn is the normalized change in boundary voltages and Delta 

cn is the normalized change in conductivity. 

 

 
Equation 1 

 
Equation 2 
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Matrix F is now the normalized sensitivity matrix in which the coefficient corresponding to a 

particular drive/receive pair and tetrahedral element is normalized by the sum of coefficients 

for the same drive/receive pair over all the elements. Although F is no better conditioned than 

S, it is less dependent on the requirements of a circular boundary shape and accurate electrode 

positioning (12,20). This is essential for clinical imaging applications, where a subject's 

profile does not match the model used to generate the sensitivity matrix and accurate 

placement of electrodes is difficult. 

 

Inverting the above relationship (equation 2) allows us to reconstruct the internal change in 

conductivity, Delta cn, from measured boundary data. Sensitivity coefficients, S, are formed 

for each tetrahedral element and for all drive/receive electrode-pair combinations. Del phid is 

the potential gradient that is generated within a tetrahedral element (e) when a unit current is 

driven between the drive pair electrodes. Del phir is the potential gradient which would be 

generated in the same element if unit current were driven through the receive pair. The 

sensitivity coefficient for each element and electrode pair combination is given by equation 3 

where the integral is over the elemental volume. As in the 2D case, we calculate the 

sensitivity matrix assuming that the conductivity distribution is uniform (12,19). A full 

solution of the potential field phi is difficult (10), so in this preliminary work we additionally 

assume the potential at a point in the object volume is given by (21) phi = (r1) sup -1 - (r2) sup 

-1 where r1 and r2 are the distances of the point to the two electrodes forming the pair. The 

next step is to find the inverse matrix F sup -1. Considering the largest data set, the sensitivity 

matrix will have 3,136 by 4,608 elements, and pseudo-inversion of this large rectangular 

matrix poses a formidable challenge. This can be achieved, however, by utilising the Moore-

Penrose pseudo-inverse (22) so that the reconstruction algorithm becomes Delta cn = Ft Qdagger 

Delta gn where Q is (FFt). (Here t denotes the matrix transpose and dagger the pseudo-

inverse.) Inversion of Q is still difficult although it is smaller than F and is a square matrix. If 

we collect the data from the cylindrical object in a strictly rotationally symmetric order, 

matrix Q will have the form: Equation 4. Sub-matrix Qk corresponds to all the data collected 

with current driven between electrode pairs in the kth drive segment (figure 2). To obtain this 

rotational symmetric format, the order of the receive pair measurements with respect to the 

drive pair is such that the geometry is identical for each drive segment apart from the required 

rotational shift. If, for example, the first receive pair for segment 1 drive pairs is between 

electrodes 2 and 4, the first receive pair for drive segment 2 will be between 4 and 6 (figure 

2). The circular symmetric matrix Q can be transformed to a block diagonal matrix D which 

has the form Di,j = Di deltai,j (i,j = 1, 2, . . . 8), by taking the fast Fourier transform (FFT). If 

matrix F is order (m by n), the resulting Di sub-matrices will be order (m/8 by m/8), as we 

have eight orders of rotational symmetry. These are pseudo-inverted independently using a 

method such as truncated singular value decomposition (23,24). The inverse (FFt)dagger matrix is 

then formed when the inverse FFT is taken of the recombined inverted sub-matrices. 

 
Equation 3 

 

To compare the performance of the three data collection configurations, computer simulations 

have been carried out. Given a known distribution of conductivity change we can generate a 

simulated voltage profile, Delta gn, using equation 2. We can then reconstruct back to observe 

how accurate the reconstructed image is compared to the original. In addition to the 3D 

models, we have also simulated the equivalent set of 2D images that would be produced from 

each of the four electrode planes. Figure 3 shows image sets for the 2D and 3D simulations. 
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These demonstrate the improvement gained in axial resolution with 3D imaging. For the 2D 

case, we can see a similar result as shown in figure 1 where the effects of 3D Delta cn changes 

propagate into neighbouring planes. This phenomenon is reduced considerably for the 3D 

reconstructions and can be quantified by measuring the response of a point object source in 

image space along an axially oriented axis. 
Figure 3. Image sets for each data collection configuration are shown for comparison against the original 

conductivity change distribution from which the simulated boundary data set is calculated. This distribution 

represents two volumes of conductivity change positioned at different heights within the model. Each block spans 

two mesh planes. 2D images that correspond to the four separate electrode planes are also shown. These 

indicate increased spread into neighbouring planes, thus demonstrating the resolution improvement gained with 

3D imaging. This is quantified in the 

point spread function (PSF) which 

indicates the performance between the 

different methods (increased PSF 

gradient corresponds to an improvement 

in axial resolution). The radially offset 

PSF is measured at a distance of two-

thirds the simulated phantom radius 

from the central axis, and shows that 

image resolution is not uniform. 

METHODS. To display the internal 

conductivity changes, the cylinder (see 

Figure 2(a)) has been split into its eight 

constituent planes and a plan view of 

each is given. A triangle in the figure 

thus represents a wedge containing three 

tetrahedral elements. The original image 

is generated by defining the conductivity change Delta cn in the required elements to 10% (white). All other 

elements (black) have no associated change. A simulated voltage profile is generated by multiplying the original 

Delta cn by the sensitivity matrix, equation (2). This is then reconstructed to give the images shown. Image sets 

are displayed using the colour scales given below each, with the maximum percentage conductivity change. The 

PSF is generated by changing the conductivity of the element block shown in the lowermost plane (p1) only. 

Corresponding element intensities are measured for all eight mesh planes (p1-p8) in the reconstructed image 

and normalized to the first plane value. 

Ideally a point object source will result in a corresponding point in the image, but inevitably 

some blurring will occur. This distribution is termed a point spread function (PSF) and figure 

3 shows the PSF for each of the reconstruction methods in a central and radially offset 

position. As expected, the largest data set (Delta gn = 3,136 measurements) gives the best 

response with the intensity in neighbouring planes reducing most rapidly. There appears only 

a marginal improvement between the 1,792 and 1,024 measurement data sets, suggesting that 

there is little useful information in the additional drive plane measurements. Because these are 

all made with drive and receive pairs in orthogonal planes, the signals produced have small 

values. The PSF also suggests that the axial resolution is improved at radially offset positions. 

Using the 1,024-element data set configuration, data has been collected from a saline-filled 

tank of the same proportions as the modelled cylinder of figure 2. Electrically insulating 

objects were positioned within the phantom; the images collected are shown in figure 4. We 

also show for comparison a computer simulation of a similar 3D distribution. The real images 

are of lower quality than the simulated versions owing to the introduction of measurement 

noise by the data collection system and the use of an approximate potential field model in the 

sensitivity matrix calculation. 
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Figure 4. Comparison of simulated and real images. The original images, of change in conductivity Delta cn, 

give a representation of nylon cylindrical blocks (diameter 50 mm, length 60 mm) positioned in a saline-filled 

(sigma = 4 mS cm sup -1) phantom. Example 

1 corresponds to two blocks located at 

different heights and radial positions within 

the phantom. Example 2 corresponds to a 

single block positioned in the centre of the 

phantom. Simulated 3D images based on a 

1,024 data set give a close representation of 

the original conductivity distribution with 

only limited Delta cn changes being 

propagated into adjacent planes. Real 

images, reconstructed from data collected 

from the phantom, are less well defined but 

the nylon blocks can still be identified. 

METHODS. Simulated images are as 

described in figure 3. Real data were 

collected using a phantom with the same 

geometrical proportions as the 3D mesh 

offigure 2, using the Sheffield MK3b 

Electrical Impedance Tomographic 

Spectroscope (EITS) (16). This 64-electrode 

system applies current at eight frequencies 

over the range 9.6 kHz to 1.2 MHz, and 

acquires a complete data set in 60 ms. A 

reference data set was collected from a 

saline-filled phantom with uniform 

conductivity. Nylon blocks were then 

submerged at positions represented by the 

simulated forward Delta cn image, and 

another voltage measurement data set was 

collected. These are normalized to form the 

boundary data set Delta gn and reconstructed. Images are displayed with colour scales showing the maximum 

values of percentage conductivity change. 

Although the spatial resolution of 3D EIT (about 10% of image diameter in the cross-

sectional plane and 12.5% in the axial plane) is worse than that of other imaging techniques 

such as magnetic resonance imaging and X-ray computed tomography, it does have several 

distinct advantages over existing medical imaging methods. These include safety, portability, 

long-term monitoring, cost, and the inherent ability to image physiological function. We are 

currently implementing a clinical trial to investigate the feasibility of using 3D EIT to detect 

pulmonary emboli. If the trial is successful, 3D EIT will provide an important alternative to 

the established radionuclide imaging technique. 
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