12 research outputs found

    Global-scale evidence for the refractory nature of riverine black carbon

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Nature Geoscience 11 (2018): 584-588, doi:10.1038/s41561-018-0159-8.Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.A.C. acknowledges financial support from the University of Zurich Forschungskredit Fellowship and the University of Zurich (grant No. STWF-18-026). M.R., S.A. and M.S. acknowledge support from the University Research Priority Projection Global Change and Biodiversity (URPP-GCB). M.Z. acknowledges support from the National Natural Science Foundation of China (No. 41521064). T.E. acknowledges support from the Swiss National Science Foundation (“CAPS-LOCK” and “CAPS-LOCK2” #200021_140850). V.G. acknowledges financial support from an Independent Study Award from the Woods Hole Oceanographic Institution

    Global fire emissions buffered by the production of pyrogenic carbon

    Get PDF
    Landscape fires burn 3–5 million km2 of the Earth’s surface annually. They emit 2.2 Pg of carbon per year to the atmosphere, but also convert a significant fraction of the burned vegetation biomass into pyrogenic carbon. Pyrogenic carbon can be stored in terrestrial and marine pools for centuries to millennia and therefore its production can be considered a mechanism for long-term carbon sequestration. Pyrogenic carbon stocks and dynamics are not considered in global carbon cycle models, which leads to systematic errors in carbon accounting. Here we present a comprehensive dataset of pyrogenic carbon production factors from field and experimental fires and merge this with the Global Fire Emissions Database to quantify the global pyrogenic carbon production flux. We found that 256 (uncertainty range: 196–340) Tg of biomass carbon was converted annually into pyrogenic carbon between 1997 and 2016. Our central estimate equates to 12% of the annual carbon emitted globally by landscape fires, which indicates that their emissions are buffered by pyrogenic carbon production. We further estimate that cumulative pyrogenic carbon production is 60 Pg since 1750, or 33–40% of the global biomass carbon lost through land use change in this period. Our results demonstrate that pyrogenic carbon production by landscape fires could be a significant, but overlooked, sink for atmospheric CO2

    Biochar: pyrogenic carbon for agricultural use: a critical review.

    Get PDF
    O biocarvão (biomassa carbonizada para uso agrícola) tem sido usado como condicionador do solo em todo o mundo, e essa tecnologia é de especial interesse para o Brasil, uma vez que tanto a ?inspiração?, que veio das Terras Pretas de Índios da Amazônia, como o fato de o Brasil ser o maior produtor mundial de carvão vegetal, com a geração de importante quantidade de resíduos na forma de finos de carvão e diversas biomassas residuais, principalmente da agroindústria, como bagaço de cana, resíduos das indústrias de madeira, papel e celulose, biocombustíveis, lodo de esgoto etc. Na última década, diversos estudos com biocarvão têm sido realizados e atualmente uma vasta literatura e excelentes revisões estão disponíveis. Objetivou-se aqui não fazer uma revisão bibliográfica exaustiva, mas sim uma revisão crítica para apontar alguns destaques na pesquisa sobre biochar. Para isso, foram selecionados alguns temaschave considerados críticos e relevantes e fez-se um ?condensado? da literatura pertinente, mais para orientar as pesquisas e tendências do que um mero olhar para o passad

    Aromaticity and degree of aromatic condensation of char

    No full text
    The aromatic carbon structure is a defining property of chars and is often expressed with the help of two concepts: (i) aromaticity and (ii) degree of aromatic condensation. The varying extent of these two features is assumed to largely determine the relatively high persistence of charred material in the environment and is thus of interest for, e.g., biochar characterization or carbon cycle studies. Consequently, a variety of methods has been used to assess the aromatic structure of chars, which has led to interesting insights but has complicated the comparison of data acquired with different methods. We therefore used a suite of seven methods (elemental analysis, MIR spectroscopy, NEXAFS spectroscopy, C NMR spectroscopy, BPCA analysis, lipid analysis and helium pycnometry) and compared 13 measurements from them using a diverse sample set of 38 laboratory chars. Our results demonstrate that most of the measurements could be categorized either into those which assess aromaticity or those which assess the degree of aromatic condensation. A variety of measurements, including relatively inexpensive and simple ones, reproducibly captured the two aromatic features in question, and data from different methods could therefore be compared. Moreover, general patterns between the two aromatic features and the pyrolysis conditions were revealed, supporting reconstruction of the highest heat treatment temperature (HTT) of char. 1

    Ámbar cretácico de San Just (Teruel): el estudio de los insectos que convivieron con los dinosaurios

    Get PDF
    San Just es un yacimiento de ámbar español que se encuentra cerca de la población de Utrillas, en la provincia de Teruel. Este yacimiento es rico en masas de ámbar que contienen variadas bioinclusiones, principalmente insectos. Se localiza en la Formación Escucha, en la cuenca del Maestrat, y tiene una edad Albiense Medio (Cretácico temprano). Desde 2003 se han realizado una prospección y dos excavaciones paleontológicas. Hasta ahora, se han descrito varios géneros y especies de insectos de los órdenes Isoptera, Thysanoptera, Hemiptera, Hymenoptera y Diptera, y un género y especie de ácaro oribátido. Además, en San Just se encontró la tela de araña más antigua conocida, la cual contiene una asociación de artrópodos atrapados. La Administración regional realiza una protección especial del yacimiento debido a su alto valor científico.San Just is a Spanish amber outcrop located near the village of Utrillas (Teruel Province). This outcrop is rich in amber pieces containing varied bioinclusions, mainly insects. It occurs in the Escucha Formation, in the Maestrat Basin, and is Middle Albian in age (Early Cretaceous). Since 2003 one prospection and two paleontological excavations have been carried out. Several genera and species of insects of the orders Isoptera, Thysanoptera, Hemiptera, Hymenoptera and Diptera, and one genus and species of an oribatid mite, have been described up to now. In addition, from San Just is the earliest known spider web, which contains an association of trapped arthropods. The regional Administration specially protects San Just due to its high scientific value.Este artículo es una contribución del proyecto del Ministerio de Ciencia e Innovación: CGL2008-00550/BTE: “El ámbar del Cretácico de España: un estudio pluridisciplinar”

    Fires prime terrestrial organic carbon for riverine export to the global oceans

    Get PDF
    Black carbon (BC) is a recalcitrant form of organic carbon (OC) produced by landscape fires. BC is an important component of the global carbon cycle because, compared to unburned biogenic OC, it is selectively conserved in terrestrial and oceanic pools. Here we show that the dissolved BC (DBC) content of dissolved OC (DOC) is twice greater in major (sub)tropical and high-latitude rivers than in major temperate rivers, with further significant differences between biomes. We estimate that rivers export 18 ± 4 Tg DBC year−1 globally and that, including particulate BC fluxes, total riverine export amounts to 43 ± 15 Tg BC year−1 (12 ± 5% of the OC flux). While rivers export ~1% of the OC sequestered by terrestrial vegetation, our estimates suggest that 34 ± 26% of the BC produced by landscape fires has an oceanic fate. Biogeochemical models require modification to account for the unique dynamics of BC and to predict the response of recalcitrant OC export to changing environmental conditions
    corecore