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Landscape fires burn an estimated 3-5 million km2 of the Earth’s surface annually, 10 

emitting 2.2 Pg C year-1 to the atmosphere while also converting a significant fraction 11 

of the carbon in burnt biomass to pyrogenic carbon (PyC) contained in combustion 12 

by-products. PyC can be stored in terrestrial and marine pools for centuries to 13 

millennia, buffering short-term emissions of carbon to the atmosphere by persisting 14 

as a recalcitrant pool of carbon during and following vegetation recovery. PyC stocks 15 

are routinely ignored in global models of the carbon cycle, leading to systematic errors 16 

in carbon accounting. Here we present a comprehensive new dataset of PyC 17 

production factors and merge this with the Global Fire Emissions Database 18 

(GFED4s+PyC) to quantify the global PyC production flux. GFED4s+PyC suggests that 19 

256 (196-340) Tg C year-1 was converted to PyC by biomass burning in the period 1997-20 

2016, 91% of which occurred in the (sub)tropics. While savannah fires were 21 

consistently the largest source of PyC (49% on average), variation in tropical forest 22 

burning, driven by the El Niño Southern Oscillation, was the dominant driver of inter-23 

annual variability in global PyC production. Our global estimate equates to 12% of the 24 

carbon emitted annually by landscape fires, indicating that the fate of a substantial 25 

fraction of the vegetation carbon stocks affected annually by fire is misrepresented in 26 

fire-enabled global models. We estimate that the cumulative production of PyC since 27 

1750 (60 Pg C) is equivalent to ~33-40% of the global losses of biomass carbon due to 28 

land use change in the same period. Our results show that PyC production creates 29 

capacity for a quantitatively significant sink for atmospheric CO2 that is presently 30 

missing from global carbon budget assessments. 31 
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Globally, landscape fires including wildfires, deforestation fires, and agricultural burns 32 

emit approximately 2.2 Pg C year-1 to the atmosphere (1997-2016)1. This emission flux 33 

includes ~0.4 Pg C year-1 due to tropical deforestation and peatland fires, which contribute to 34 

net global emissions of carbon due to land use change (~1.1-1.5 Pg C year-1; Figure 1)2–4. 35 

The emission fluxes resulting from biomass fires and land use change are outweighed by the 36 

re-sequestration flux of carbon to undisturbed and re-growing vegetation (~5.0 Pg C year-1; 37 

Figure 1)5–8. These global carbon budget estimates are generated by models that represent 38 

the temporally distinct processes of immediate carbon emission from burned areas and 39 

decadal-scale re-sequestration through vegetation (re-)growth in a spatially explicit 40 

manner1,9,10. However, such models routinely overlook the coincident flux of biomass carbon 41 

to recalcitrant by-products of fire, which can be stored in terrestrial and marine pools for 42 

centuries to millennia, and thus provide a long-term buffer against fire emissions (Figure 43 

1)7,11–14. Consequently, the legacy effects of fire that operate on the longest timescales are 44 

systematically excluded from models of the carbon cycle and from global carbon budgets13,15. 45 

These legacy effects are due to the incomplete combustion of vegetation during 46 

landscape fires, which transforms organic carbon (OC) in biomass to a continuum of 47 

thermally-altered products that are collectively termed pyrogenic carbon (PyC)11,13,16. The 48 

majority of the PyC produced during vegetation fires remains initially on the ground in 49 

charcoal particles of varying size and is subsequently transferred to its major global stores in 50 

soils17–19, sediments20,21 and ocean waters22,23. A smaller fraction of fire-affected vegetation 51 

carbon is emitted as PyC in smoke and has been studied extensively for its influence on 52 

Earth’s atmospheric and cryospheric radiative balances24,25. PyC includes labile products of 53 

depolymerisation reactions as well as aromatic molecules that result from condensation 54 

reactions, the latter of which are depleted in functional groups and thus chemically and 55 

biologically recalcitrant26–28. The enhanced resistance of PyC to biotic and abiotic 56 

decomposition leads to its preferential storage in terrestrial and marine pools16,21 and a 57 

residence time that is typically one to three orders of magnitude greater than that of its 58 

unburnt precursors13. This makes PyC one of the largest groups of chemically discernible 59 

compounds in soil with a contribution to soil organic carbon (SOC) stocks of 14% globally17. 60 

PyC is also conserved across the land-to-ocean aquatic continuum and thus contributes 61 

approximately 10% of riverine dissolved organic carbon29, 16% of riverine particulate organic 62 

carbon30, and 20-50% of the organic carbon in ocean sediments14. 63 
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 64 

Figure 1: A simplified schematic of the global carbon cycle including the buffer and legacy roles of PyC. Stock 65 
values are expressed in Pg C (1 Pg C = 1 × 1015 g of carbon) and flux values are expressed in Pg C year-1. The 66 
global carbon cycle is represented by values from the Global Carbon Budget assessment of the decade 2008–67 
2017 (ref. 2) including: stocks of carbon in vegetation, soil, permafrost, ocean dissolved organic and inorganic 68 
matter, coastal and oceanic sediments, and fossil fuel reserves; fluxes of carbon due to the net land sink 69 
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(modified to exclude non-deforestation fire emissions), fossil fuel combustion, the net ocean sink, and net land 70 
use change emissions (modified to exclude deforestation fire emissions). Emission estimates from deforestation 71 
and peat fires, and from non-deforestation fires derive from GFED4s and relate to the period 1997-2016 (ref. 1; 72 
deforestation fires are restricted to the tropics). Carbon fluxes due to volcanism and rock weathering derive from 73 
the IPCC AR5 assessment and relate to the period 2000-2009 (ref. 4). Pyrogenic carbon production fluxes due 74 
to deforestation and non-deforestation fires are based on estimates from GFED4s+PyC and relate to the period 75 
1997-2016 (this study). PyC stocks in soils, oceanic DOC and ocean sediments are based on representative 76 
PyC/OC ratios from references 17, 31, and 14 applied to the Global Carbon Budget 2018 estimates of OC stocks 77 
and fluxes. PyC fluxes through rivers are the sum of global dissolved and particulate PyC export fluxes from 78 
references 29 and 30. Residence times shown for soils derive from references 32 and 26. Residence times for 79 
oceanic PyC pools derive from references 20 and 33. Maximum (and minimum) legacy PyC decomposition fluxes 80 
for land and ocean stocks are calculated as the product of high-end (and low-end) total stock magnitudes in 81 
each domain and the reciprocal of the low-end (and high-end) estimate for residence time. 82 

 83 

A series of reviews and data syntheses have recognised the potential of PyC 84 

production to invoke a drawdown (sink) of photosynthetically-sequestered CO2 to pools that 85 

are stable on timescales relevant to anthropogenic climate change and its 86 

mitigation7,11,13,14,34–37. Owing to the relative recalcitrance of PyC, the conversion of biomass 87 

carbon to PyC represents an extraction of carbon from a pool cycling on decadal timescales 88 

to a pool cycling on centennial or millennial timescales14,20,21,26,38. This storage potential 89 

contrasts with that of dead vegetation, which otherwise contributes to post-fire emissions on 90 

annual to decadal timescales or enters soil pools with a shorter residence time than that of 91 

PyC9,12,26,39,40. Consequently, post-fire PyC pools emit carbon to the atmosphere over a 92 

significantly longer time period than would be the case in the absence of PyC production, 93 

meanwhile providing a buffer that moderates atmospheric CO2 stocks (Figure 1)7,13,14. At 94 

present, the fire-enabled vegetation models that are used to make global carbon budget 95 

calculations account for short-term fire emissions but routinely exclude fluxes of carbon from 96 

biomass to PyC or the delayed emission of carbon from legacy PyC stocks to the atmosphere 97 

(Figure 1)9,10,15,41,42. This introduces systematic errors to global carbon budgets through 98 

misrepresentation of modern and historical fire effects on the net exchange of carbon 99 

between the atmospheric and terrestrial-marine pools13–15. 100 

While PyC has been recognised as a major component of post-fire carbon stocks for 101 

a number of decades11,37, quantification of its production rate at the global scale has been 102 

problematic and estimates vary by roughly an order of magnitude (50-379 Tg C year-1)13,14,36. 103 
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A cause of the large range of production estimates is that calculations have previously relied 104 

on incomplete information regarding the spatial distribution and type of fires, the allocation of 105 

carbon amongst biomass fuel components in burned areas and the specific PyC production 106 

factors for these distinct biomass fuel components. To alleviate these issues, we enhanced 107 

the Global Fire Emissions Database version 4 with small fires (GFED4s)1, which is one of the 108 

principal process-based models used to make estimates of carbon emission from open 109 

biomass burning41,43,44. Specifically, PyC production was incorporated by following a three-110 

step approach consisting of: (i) the assembly of the most comprehensive global database of 111 

PyC production factors (PPyC; g PyC g-1 C emitted) compiled to date; (ii) the assignment of 112 

production factors for individual fuel classes stratified as coarse or fine and as woody or non-113 

woody (Figure 2), and; (iii) the application of production factor (PPyC) values to fuel-stratified 114 

carbon emissions (CE; g C emitted) modelled by the native fuel consumption model in 115 

GFED4s. The output is the first global gridded dataset for monthly PyC production at a 116 

resolution of 0.25° × 0.25°, covering the years 1997-2016. 117 

 118 

 119 

Figure 1: Box plots showing the distributions of PyC production factor (PPYC) values for each of the biomass 120 
component classes in the production factor dataset. Abbreviations are: CWAGF, coarse woody aboveground 121 
fuels; CWSF, coarse woody surface fuels; FWAGF, fine woody aboveground fuels; FWSF, fine woody surface 122 
fuels; NWAGF, non-woody aboveground fuels; NWSF, non-woody surface fuels; CWF, coarse woody fuels 123 
(includes both CWSF and CWAGF); FWF, fine woody fuels (includes both FWAGF and FWSF); NWF, non-124 
woody fuels (includes both NWAGF and NWSF). Dots mark the distribution of PPyC values across 1% intervals 125 
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on the y-axis. Red dots show mean PPyC values while red lines show the bootstrapped 95% confidence interval 126 
(see methods). Boxes illustrate the median and interquartile range of values. Letters a and b indicate biomass 127 
components with statistically similar PPYC distributions at the 95% confidence level according to Tukey HSD 128 
tests. The number of data entries (n) is also shown.  129 

 130 

Global PyC Production 131 

Our central estimate for global PyC production in the period 1997-2016 was 256 Tg C 132 

year-1 with an uncertainty range based on production factors of 196-340 Tg C year-1 (Figure 133 

3). Inter-annual variability in global PyC production, expressed as the standard deviation 134 

around the mean, was 47 Tg C year-1 and was most strongly associated with variability in 135 

woody fuel combustion, including standing wood and coarse woody debris (CWD; 136 

supplementary information text S1 and Figure S1). Coarse woody fuels produce PyC at a 137 

greater rate than finer fuels (Figure 2) and consequently forest fires have disproportionate 138 

potential to influence global rates of PyC production (supplementary Figure S2). 139 

The El Niño Southern Oscillation (ENSO) is the primary driver of inter-annual variability 140 

in burned area in the tropics45 and previous analyses conducted with GFED have shown that 141 

carbon emissions from tropical forest ecosystems more than doubled on average during 142 

positive (El Niño) phases relative to negative (La Niña) ENSO phases46. Correspondingly, we 143 

calculated that global rates of PyC production in tropical forests were 111% greater during 144 

the main fire season of El Niño phases than La Niña phases (supplementary Table S1). As 145 

rates of PyC production by non-forest fires did not show a significant response to ENSO at 146 

the global scale (supplementary Table S1), the response of forest fires was the major driver 147 

of inter-annual variability in total PyC production (Figure 3). The production of PyC was 148 

anomalously high in 1997-1998 (366 Tg C year-1), aligning with a particularly strong positive 149 

El Niño phase which promoted extensive burning of (tropical) forests in South and Central 150 

America and in Southeast and Equatorial Asia1,46. 151 

  152 
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 153 

Figure 3: Annual global PyC production estimates from GFED4s+PyC. The black line plots the modelled rate 154 
of production based on central PPyC ratios (g PyC g-1 C emitted) from the global dataset. The shaded area 155 
indicates the uncertainty range of modelled values based on the 95% confidence intervals of PPYC values (see 156 
Figure 2). The contributions of savannah burning and tropical forest burning to global production totals are 157 
shown, the latter of which includes deforestation fires (also shown; dashed line).  158 

 159 

Major Production Regions 160 

The PyC production rates modelled by GFED4s+PyC conformed to a latitudinal 161 

pattern (Figure 4), with the tropical latitudes clearly dominating production at the global scale. 162 

91% of global production occurred in the tropics and subtropics (0-30° N/S), while temperate 163 

(30-60° N/S) and high-latitude regions (60-90° N) provided small contributions to the global 164 

total (8% and 1%, respectively).  165 

The global distribution of PyC production also showed intricate regional patterns driven 166 

by variation in both the frequency at which fuel stocks were exposed to fire and the magnitude 167 

of the fuel stocks that were combusted during the fires that occurred (supplementary Figures 168 

S3 and S4). Fire frequency was ultimately the key determinant of PyC production rate and 169 

this explains why the tropics and subtropics were the dominant source regions. Although 170 

savannah fires affected low fuel stocks (0.2 kg C km-2 on average; supplementary information 171 
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text S2), these fires occurred frequently and were spatially extensive (supplementary Figure 172 

S5 and table S2). They thus made the largest contribution to the global PyC production flux 173 

(125 Tg C year-1 on average). Although tropical deforestation fires affected approximately 1% 174 

of the area of savannah fires, they affected large stocks of fuel (8.7 kg C km-2 on average; 175 

supplementary table S2) and were thus second largest driver of global PyC production, 176 

contributing 49 Tg C year-1. The area affected by non-deforestation tropical forest fires was 177 

more than a factor of 4 larger than that of deforestation fires, however fuel consumption was 178 

relatively low (2.3 kg C km-2 on average; supplementary table S2). These fires provide the 179 

third major component of the global PyC production flux (34 Tg C year-1). Overall, 81% of 180 

total global PyC production in the period 1997-2016 occurred in savannahs (49%) and 181 

tropical forests (32%). 182 

 183 

 184 
 185 
Figure 4: Annual average PyC production rates for the period 1997-2016 from GFED4s+PyC, based on central 186 
production factors (see Figure 2). (Left panel) The global distribution of PyC production expressed in g C m-2 187 
year-1. (Right panel) The total production of PyC (Tg C year-1) in 15° latitudinal bands segregated according to 188 
the fire type, including: savannah fires (SAVA); non-deforestation tropical forest fires (TROF); tropical 189 
deforestation fires (DEFO); agricultural fires (AGRI); temperate forest fires (TEMF); extratropical grassland fires 190 
(EXGR), and; boreal forest fires (BORF). 191 
 192 
  193 
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Global Carbon Budget Implications 194 

Here we have quantified the global gross sink of atmospheric carbon caused by the 195 

transfer of photosynthetically-sequestered biomass carbon to stocks of PyC during 196 

vegetation fires. Our central global PyC production flux estimate (256 Tg C year-1) is nontrivial 197 

within the context of the global carbon cycle (Figure 1), equating to 12% of the global carbon 198 

emissions flux due to biomass burning and around 8% of the land sink for atmospheric CO2 199 

(~3.0-3.2 Tg C year-1)2,4. This flux is in addition to the smaller global flux of 2 Tg C year-1 200 

caused by the emission of PyC in smoke from vegetation fires (according to estimates made 201 

using GFED4s in the years 1997-2016)1. 202 

The magnitude of our global estimate for PyC production indicates that the 203 

transformation of biomass carbon to PyC in vegetation fires has the potential to significantly 204 

influence the atmospheric stock of carbon. A net sink of atmospheric carbon to stocks of PyC 205 

can be expected to develop if the flux associated with its production is unmatched by re-206 

mineralisation fluxes from legacy PyC stocks in terrestrial and marine pools (Figure 1). Earth 207 

System Models (ESMs) are the most sophisticated tools available to quantify the exchange 208 

of carbon between the atmosphere and these pools in time periods for which robust empirical 209 

data is sparse or unavailable. Despite foregoing attempts to highlight the importance of PyC 210 

production for carbon storage over timescales relevant to anthropogenic climate change and 211 

its mitigation36,37,47, the absence of the PyC cycle from ESMs has restricted the scope for 212 

quantifying its role in the carbon cycle15. The method introduced here allows for the routine 213 

integration of PyC production into fire-enabled vegetation models in a manner that 214 

systematically considers the spatial distribution of fire, the composition of the fuel stocks 215 

affected and the specific PyC production factors that apply to individual fuel components. 216 

This procedure would be relatively simple to implement in other fire-enabled vegetation 217 

models used by ESMs, meaning that the major outstanding challenge to quantifying the net 218 

exchange of carbon between the atmosphere and PyC stocks with ESMs will be to improve 219 

constraints over its storage and residence time in terrestrial and marine pools (Figure 1)14,15. 220 

We also show that the PyC cycle must be integrated into ESMs if they are to accurately 221 

represent the more general role of fire in the carbon cycle. At present, the fate of 11% of the 222 

global biomass carbon stocks affected annually by fire is misrepresented in global models. 223 

Recent estimates suggest that total carbon emissions from biomass burning in the period 224 
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1750-2015 amounted to around 500 Pg C (averaging 1.9 Pg C year-1)41. Under the 225 

assumption that the modern global PyC production flux maintained a constant ratio with the 226 

carbon emissions flux throughout this period, we estimate that approximately 60 Pg C was 227 

transferred to PyC stocks since the beginning of the industrial revolution. This value is 228 

equivalent to 33-40% of the carbon lost from biomass pools due to land use change in the 229 

same time period (145-180 Pg C)4,48. 230 

The production flux of PyC represents the quantity of carbon that models would 231 

otherwise treat as unburned dead or living vegetation with a residence time in terrestrial pools 232 

on the order of months to decades9,12,26,39,40,49. This misrepresentation of the legacy effects 233 

of fire thus introduces potentially significant errors to carbon accounting exercises. Moreover, 234 

as PyC dynamics are not represented in the ESMs used to make global carbon budget 235 

calculations, this pool may represent a missing sink or source of carbon to the 236 

atmosphere15,50. Our PyC production estimate is equivalent to 41% of the global carbon 237 

budget imbalance caused by overestimated emissions and/or underestimated sinks in the 238 

past decade (600 Tg C year-1)2, suggesting that errors resulting from the absence of PyC 239 

from ESMs may contribute significantly to global carbon accounting uncertainties. 240 

The production of PyC may also become an increasingly important process for global 241 

carbon cycling in future centuries. Although global burned area has declined in at least the 242 

past two decades due predominantly to the conversion of savannah and grassland to 243 

agriculture51,52, recent fire modelling studies generally agree that this decline is unlikely to 244 

continue past the year 205053–55. It is also likely that a higher fraction of global burned area 245 

will be distributed in forests where significant stocks of vegetation carbon are held54,56,57. As 246 

woody fuels generate more PyC per unit of biomass carbon than other fuels (Figure 1), the 247 

spread of fire into forests can be expected to disproportionately enhance global PyC 248 

production (supplementary Figure S2). Although it is less clear how fire prevalence will 249 

change in tropical and temperate forests owing to a stronger human control over burning in 250 

these regions51,54, recent increases in fire extent caused by increasing drought frequency in 251 

Amazonia are already counteracting reductions in the extent of deforestation fires58. 252 

Notwithstanding the significant uncertainty that exists in model predictions of future fire 253 

regimes, there are strong indications that PyC production rates will increase in some of the 254 

Earth’s most carbon-dense regions in response to a changing climate7,9,59. This implies that 255 
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the buffer for atmospheric CO2 emissions resulting from PyC production will grow in future 256 

centuries.  257 

Methods 258 

Global Fuel Consumption Modelling in GFED4s 259 

In GFED4s, carbon emissions to the atmosphere are quantified based on burned area 260 

and fuel consumption per unit burned area. Burned area is derived from satellite60 and fires 261 

that are too small to be detected by regular burned area algorithms are derived statistically 262 

based on active fire detections and relations with vegetation indices61. Fuel consumption is 263 

modelled using a satellite-driven biogeochemical model1 and tuned to match observations62. 264 

Most of the underlying satellite input datasets have a 500 × 500 m resolution but are 265 

aggregated to the model resolution of 0.25° × 0.25°. Total fuel consumption is based on fuel 266 

consumption of several fuel components including leaves, grasses, litter, fine woody debris, 267 

coarse woody debris (CWD), and standing wood. For more information on the GFED4s 268 

modelling approach, the reader is directed to reference1. 269 

To calculate PyC production within GFED4s we added a production factor, PPYC, which 270 

quantifies the production of PyC per unit carbon emitted (g PyC g-1 C emitted). Until now, the 271 

principle obstacle to performing a global modelling exercise of this type has been the lack of 272 

a sufficiently rich and standardised dataset with which to constrain representative values for 273 

PPYC. The remainder of this section details how representative PyC production factors were 274 

collated and summarised and subsequently integrated into the fuel consumption model of 275 

GFED4s. 276 

Our estimates of uncertainty in PyC production relate only to variability in PyC 277 

production factors and do not include uncertainty in fuel consumption propagating from 278 

GFED4s. Uncertainties in GFED4s fuel consumption are discussed in great detail in ref. 1 279 

and are predominantly the result of uncertainties in the satellite detection of small fires using 280 

thermal anomalies and burn scars. Based on the level of agreement with regional-level 281 

estimates it is estimated that the burned area data used in GFED have a 1 standard deviation 282 

uncertainty range of 50% but are probably underestimated due to the difficulty in capturing 283 

small fire burned area and the choice of a conservative approach in ref. 61. As carbon 284 

emissions and PyC production are co-dependent on burned area, estimation errors relating 285 
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to fire detection introduce scalar uncertainties. Uncertainty in fuel consumption is a smaller 286 

component of the overall uncertainty in GFED4s1 emission estimates and has been reduced 287 

from previous versions through its incorporation of a global dataset of fuel consumption 288 

estimates62. 289 

Collating a Global Dataset of PyC Production Factors 290 

We compiled a new database of PPYC factors from a global collection of 21 published 291 

studies which reported on PyC production in 91 burn units, as well as two new datasets 292 

produced by the authors with 23 burn units reported for the first time here, and standardised 293 

their reporting. All studies used one of the following two broad approaches to quantifying the 294 

impacts of fire on the biomass carbon stocks, either: pre-fire and post-fire stocks of biomass 295 

carbon and PyC are measured, or; space-for-time substitution is used to constrain burned 296 

and unburned stocks of biomass carbon and PyC, which are assumed to be equivalent to 297 

pre-fire and post-fire stocks, respectively. Hereafter, the terms “pre-fire” and “post-fire” are 298 

used to refer to both types of assessment. Here we focus only on PyC present in charcoal 299 

and ash on the ground following fire63 as well as charred vegetation. PyC emitted with smoke, 300 

transported in the atmosphere and deposited over a distant area is not included as this 301 

process has been studied in separate dedicated studies conducted by atmospheric 302 

scientists24 and represents a relatively small flux in comparison (<5%)13,14. 303 

The PPYC values were calculated for each of six classes of widely used biomass 304 

components: coarse woody surface fuels (CWSF), including coarse woody debris or downed 305 

wood defined by typical diameter thresholds of >7.6 cm or >10 cm64,65; fine woody surface 306 

fuels (FWSF), including fine woody debris or any other woody debris with diameters below 307 

the thresholds for CWSF; coarse woody aboveground fuels (CWAGF), including trees or 308 

branches with diameters greater than the thresholds for CWSF; fine woody aboveground 309 

fuels (FWAGF), including material described as shrubs, trees or branches with diameters 310 

below the thresholds for CWSF; non-woody surface fuels (NWSF), including litter, understory 311 

vegetation, grass, root mat and any other form of non-woody material directly in contact with 312 

the ground surface65,66, and finally; non-woody aboveground fuels (NWAGF), including 313 

foliage, leaves, needles, crown fuels and any other form of non-woody material that attaches 314 

to standing wood structures above the ground surface. 315 

For each biomass component, PPYC was calculated using the following equation (1): 316 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐶𝐶𝑃𝑃𝑃𝑃

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 317 

where CPy is the mass of PyC created during the fire that was attributed to the 318 

component, CPRE was the pre-fire stock of biomass carbon in the component, and CPOST was 319 

the post-fire stock of biomass carbon in the component. CPy, CPRE and CPOST were all 320 

expressed in the units g C km-2.  321 

Criteria were applied as filters to the dataset in order to ensure that PPYC could be 322 

calculated in a consistent and representative manner. Specifically, PPYC was calculated if the 323 

following conditions were met: first, both pre-fire and post-fire biomass stocks were reported 324 

and carbon content (%) was either measured or assumed based on representative values 325 

from the literature; second, post-fire stocks of pyrogenic organic matter (charcoal, ash and 326 

charred vegetation) were reported and their PyC content (%) was either measured or 327 

assumed based on representative values from the literature; third, the type of fire that 328 

occurred was representative of a widespread regional fire type (e.g. wildfires, slash-and-burn 329 

deforestation, and prescribed fire); fourth, in experimental  fires, the biomass carbon stock 330 

was designed to replicate the density and structure of biomass carbon stocks observed in the 331 

field and the burning efficiency was not optimised or adapted as a factor of the study design; 332 

fifth, the post-fire sampling exercise was completed within 3 months of the fire such that 333 

losses of PyC through erosion and mineralisation were minimised.  334 

Like biomass carbon, total PyC stocks are distributed across several components 335 

including charcoal and ash on the ground, charcoal attached to coarse woody debris, and 336 

charcoal attached to aboveground vegetation13. The majority of the studies included in the 337 

production factor dataset matched the studied PyC components to individual biomass carbon 338 

components from which they were known to derive. However, as some individual 339 

components of PyC stocks can have a mixture of sources that are indistinguishable from their 340 

location or appearance alone, it was occasionally necessary to make assumptions about the 341 

biomass components that were sources of these components. This was done on a study-by-342 

study basis. In cases where the source of each PyC component was not explicitly stated, the 343 

following procedural steps were adhered to. On a first basis, the PyC component was 344 

assigned to a biomass component according to the most probable source inferred, but not 345 

explicitly stated, in the primary literature. Second, where more than one biomass component 346 
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was inferred to be a source of the PyC stock in the primary literature, the PyC stock was 347 

weighted proportionally to the pre-fire stock of carbon present in each of the implicated 348 

biomass components. Otherwise, if no sources of PyC were inferred in the primary literature 349 

it was necessary to make independent assumptions about the source of PyC in a manner 350 

that was consistent with the other studies included in the dataset and our collective 351 

experience of quantifying PyC production in the field.  352 

Summarising Production Factor Values for use in GFED4s+PyC 353 

Our global database suggested that coarse woody surface fuels (CWSF) and 354 

aboveground fuels (CWAGF) produce significantly more PyC, relative to carbon emitted, than 355 

other fuel classes (PPYC averaged 0.25 and 0.31 g PyC g-1 C emitted, respectively; Figure 2). 356 

In contrast, the mean PPYC values for fine woody surface fuels (FWSF) and fine woody 357 

aboveground fuels (FWAGF; 0.12 and 0.076 g PyC g-1 C emitted, respectively) did not differ 358 

significantly from those of non-woody surface fuels (NWSF) or non-woody aboveground fuels 359 

(NWAGF; 0.099 and 0.062 g PyC g-1 C emitted, respectively). These results are consistent 360 

with previous studies, which suggest that large-diameter woody fuels burn less completely 361 

and produce PyC in greater proportions than finer fuels23,36,67. 362 

For each class, the mean PyC production factor was used as the central estimate for 363 

PPYC, while the confidence interval around the mean PPYC was calculated through a 364 

bootstrapping procedure. Specifically, the available PyC production factors from the dataset 365 

were resampled 50,000 times, the mean PPYC was calculated for each resample, and the 366 

95% confidence interval was calculated as the middle 95% of the observed 50,000 means 367 

(i.e. those ranked 1,250th to 48,750th). 368 

According to analysis of variance (ANOVA) with a Tukey Honest Significant Difference 369 

post-hoc test, no significant differences in mean PPYC were observed between the 370 

distributions of PPyC for coarse, fine, and non- woody fuels positioned at the ground surface 371 

and those same fuels located above the ground surface. Therefore, the PPYC values applied 372 

in GFED4s+PyC were based on the distribution of values in three simplified fuel classes 373 

(Figure 2): coarse woody fuels (CWF: mean 0.26 g PyC g-1 C; 95% confidence interval  0.18-374 

0.39 g PyC g-1 C), fine woody fuels (FWF: mean 0.096 g PyC g-1 C; 95% confidence interval 375 

0.064-0.15 g PyC g-1 C) and non-woody fuels (NWF: mean 0.091 g PyC g-1 C; 95% 376 

confidence interval 0.074-0.11 g PyC g-1 C).  377 
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Assigning PyC Production Factors in GFED4s+PyC 378 

PPYC values were assigned to each of the native fuel classes of GFED4s1, which are: 379 

leaves; grasses; surface fuels (including litter and fine woody debris); coarse woody debris 380 

(CWD), and; standing wood (including trunks, stems and branches). Mean PPYC values and 381 

bootstrapped confidence interval values for CWF, FWF and NWF from the global dataset 382 

were used to define representative PPyC values for each of the GFED4s fuel classes (Figure 383 

2). Full details regarding the assignment of PPYC values to each GFED4s fuel class are 384 

provided in the supplementary information (text S3 and table S3). Briefly: leaf, litter, grass 385 

were assigned the relevant PPYC values of NWF; fine woody debris and coarse woody debris 386 

were assigned the values of FWF and CWF, respectively, and; PPYC values for standing wood 387 

were applied in a spatially explicit manner as weighted combinations of the PPYC values for 388 

CWF (for carbon in trunks) and FWF (for carbon in branches). The weighted CWF:FWF ratio 389 

was assigned according to empirical relationships defining biomass carbon apportionment to 390 

branches and trunks in the various forest types of the GFED4s land cover scheme 391 

(supplementary information text S3 and table S4)68.  392 

Quantifying ENSO Impacts on PyC Production 393 

To investigate the influence of pan-tropical climatic variability driven by the El Niño 394 

Southern Oscillation on the production of PyC, we replicated the analysis presented by Chen 395 

et al. (ref. 46) with a focus on PyC production rather than carbon emissions. The pan-tropics 396 

were defined as consisting of Central America (CEAM); Northern Hemisphere South America 397 

(NHSA); Southern Hemisphere South America (SHSA); Northern Hemisphere Africa (NHAF); 398 

Southern Hemisphere Africa (SHAF); Southeast Asia (SEAS); Equatorial Asia (EQAS), and; 399 

Australia (AUST; supplementary Figure S6). PyC production in El Niño and La Niña phases 400 

was compared for the major fire season periods defined in each tropical region by Chen et 401 

al. (ref. 46); the reader is referred to their study for a thorough explanation of the rationale for 402 

selecting these comparison periods. We summed PyC production in the major fire season 403 

period of each region and disaggregated this total to forest and non-forest fires according to 404 

the dominant land cover type in the GFED4s land cover scheme (based on the MODIS Land 405 

Cover Type Climate Modelling Grid product MCD12C1)69. 406 



Submitted manuscript draft of version of: Jones, M.W., Santín, C., van der Werf, G.R., Doerr, S.H. 
(2019) Global fire emissions buffered by the production of recalcitrant pyrogenic carbon. Nature 
Geoscience (published on 5th Aug. 2019, available at: https://doi.org/10.1038/s41561-019-0403-
x). Note that the published version will be an updated version from this submitted draft.  
 

Apportioning Sources of PyC 407 

Following GFED4s+PyC model runs, PyC production was assigned to specific sources 408 

following a method developed previously for use in GFED4s model runs1,70. Specifically, PyC 409 

production occurring as a result of non-deforestation fires was disaggregated in each cell to 410 

tropical forest, savannah/grassland, boreal forest, temperate forest, and agricultural fires 411 

using an existing algorithm that utilises fractional tree cover, climate and fire persistence 412 

variables. The reader is referred to ref. 70 for a full discussion of this algorithm. We added an 413 

additional latitudinal constraint (30 °N-30 °S) to further disaggregate the savannah 414 

compartment, which thus separates tropical savannahs and grasslands from extratropical 415 

grasslands.  416 

References 417 

1. van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth 418 
Syst. Sci. Data 9, 697–720 (2017). 419 

2. Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 420 
(2018). 421 

3. Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use 422 
and land cover change 1850-2015. Global Biogeochem. Cycles 31, 456–472 (2017). 423 

4. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of 424 
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 425 
Climate Change (eds. Stocker, T. F. et al.) 465–570 (Cambridge University Press, 426 
2013). 427 

5. Crutzen, P. J. & Andreae, M. O. Biomass Burning in the Tropics: Impact on 428 
Atmospheric Chemistry and Biogeochemical Cycles. Science 250, 1669–1678 (1990). 429 

6. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in 430 
observed net carbon dioxide uptake by land and oceans during the past 50 years. 431 
Nature 488, 70–72 (2012). 432 

7. Bowman, D. et al. Fire in the Earth system. Science 324, 481–4 (2009). 433 
8. Pan, Y. et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 333, 434 

988–993 (2011). 435 
9. Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 436 

13, 3359–3375 (2016). 437 
10. Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: 438 

Experimental and analytical protocols with detailed model descriptions. Geosci. Model 439 
Dev. 10, 1175–1197 (2017). 440 

11. Kuhlbusch, T. A. J. Black Carbon and the Carbon Cycle. Science 280, 1903–1904 441 
(1998). 442 

12. Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black 443 
carbon. Nat. Geosci. 1, 832–835 (2008). 444 

13. Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation 445 
fires. Glob. Chang. Biol. 22, 76–91 (2016). 446 



Submitted manuscript draft of version of: Jones, M.W., Santín, C., van der Werf, G.R., Doerr, S.H. 
(2019) Global fire emissions buffered by the production of recalcitrant pyrogenic carbon. Nature 
Geoscience (published on 5th Aug. 2019, available at: https://doi.org/10.1038/s41561-019-0403-
x). Note that the published version will be an updated version from this submitted draft.  
 

14. Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The Pyrogenic Carbon 447 
Cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015). 448 

15. Landry, J.-S. & Matthews, H. D. The global pyrogenic carbon cycle and its impact on 449 
the level of atmospheric CO 2 over past and future centuries. Glob. Chang. Biol. 23, 450 
3205–3218 (2017). 451 

16. Schmidt, M. W. I. Carbon budget in the black. Nature 427, 305–307 (2004). 452 
17. Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic Carbon in Soils: 453 

A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic 454 
Carbon and Stocks. Front. Earth Sci. 4, 1–14 (2016). 455 

18. Ohlson, M., Dahlberg, B., Økland, T., Brown, K. J. & Halvorsen, R. The charcoal carbon 456 
pool in boreal forest soils. Nat. Geosci. 2, 692–695 (2009). 457 

19. Koele, N. et al. Amazon Basin forest pyrogenic carbon stocks: First estimate of deep 458 
storage. Geoderma 306, 237–243 (2017). 459 

20. Masiello, C. A. & Druffel, E. R. M. Black Carbon in Deep-Sea Sediments. Science 280, 460 
1911–1913 (1998). 461 

21. Schmidt, M. W. I. & Noack, A. G. Black carbon in soils and sediments: Analysis, 462 
distribution, implications, and current challenges. Global Biogeochem. Cycles 14, 777–463 
793 (2000). 464 

22. Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic 465 
matter. Nat. Geosci. 2, 175–179 (2009). 466 

23. Wagner, S., Jaffé, R. & Stubbins, A. Dissolved black carbon in aquatic ecosystems. 467 
Limnol. Oceanogr. Lett. 3, 168–185 (2018). 468 

24. Bond, T. C. et al. Bounding the role of black carbon in the climate system: A scientific 469 
assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013). 470 

25. Booth, B. & Bellouin, N. Black carbon and atmospheric feedbacks. Nature 519, 167–471 
168 (2015). 472 

26. Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: Decomposition 473 
during eight years and transformation as assessed by compound-specific14C analysis. 474 
Soil Biol. Biochem. 70, 229–236 (2014). 475 

27. Schneider, M. P. W., Hilf, M., Vogt, U. F. & Schmidt, M. W. I. The benzene 476 
polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200°C and 1000°C. 477 
Org. Geochem. 41, 1082–1088 (2010). 478 

28. Wiedemeier, D. B. et al. Aromaticity and degree of aromatic condensation of char. Org. 479 
Geochem. 78, 135–143 (2015). 480 

29. Jaffé, R. et al. Global charcoal mobilization from soils via dissolution and riverine 481 
transport to the oceans. Science 340, 345–7 (2013). 482 

30. Coppola, A. I. et al. Global-scale evidence for the refractory nature of riverine black 483 
carbon. Nat. Geosci. 11, 584–588 (2018). 484 

31. Coppola, A. I., Ziolkowski, L. A., Masiello, C. A. & Druffel, E. R. M. Aged black carbon 485 
in marine sediments and sinking particles. Geophys. Res. Lett. 41, 2427–2433 (2014). 486 

32. Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar Carbon Stability in a Clayey Soil As 487 
a Function of Feedstock and Pyrolysis Temperature. Environ. Sci. Technol. 46, 11770–488 
11778 (2012). 489 

33. Ziolkowski, L. A. & Druffel, E. R. M. Aged black carbon identified in marine dissolved 490 
organic carbon. Geophys. Res. Lett. 37, 4–7 (2010). 491 

34. Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon: a synthesis of current 492 
knowledge and uncertainties with special consideration of boreal regions. 493 
Biogeosciences 3, 397–420 (2006). 494 



Submitted manuscript draft of version of: Jones, M.W., Santín, C., van der Werf, G.R., Doerr, S.H. 
(2019) Global fire emissions buffered by the production of recalcitrant pyrogenic carbon. Nature 
Geoscience (published on 5th Aug. 2019, available at: https://doi.org/10.1038/s41561-019-0403-
x). Note that the published version will be an updated version from this submitted draft.  
 

35. Goldberg, E. D. Black carbon in the environment: properties and distribution. (John 495 
Wiley and Sons, 1985). 496 

36. Kuhlbusch, T. a. J. & Crutzen, P. J. Toward a global estimate of black carbon in 497 
residues of vegetation fires representing a sink of atmospheric CO 2 and a source of 498 
O 2. Global Biogeochem. Cycles 9, 491–501 (1995). 499 

37. Santín, C., Doerr, S. H., Preston, C. M. & González-Rodríguez, G. Pyrogenic organic 500 
matter production from wildfires: a missing sink in the global carbon cycle. Glob. Chang. 501 
Biol. 21, 1621–1633 (2015). 502 

38. Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in 503 
soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012). 504 

39. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. 505 
Nature 478, 49–56 (2011). 506 

40. Thurner, M. et al. Evaluation of climate-related carbon turnover processes in global 507 
vegetation models for boreal and temperate forests. Glob. Chang. Biol. 23, 3076–3091 508 
(2017). 509 

41. Van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 510 
(BB4CMIP) based on merging satellite observations with proxies and fire models 511 
(1750-2015). Geosci. Model Dev. 10, 3329–3357 (2017). 512 

42. Yang, J. et al. Century-scale patterns and trends of global pyrogenic carbon emissions 513 
and fire influences on terrestrial carbon balance. Global Biogeochem. Cycles 29, 1549–514 
1566 (2015). 515 

43. Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Global 516 
Biogeochem. Cycles 22, 1–17 (2008). 517 

44. Yang, J. et al. Spatial and temporal patterns of global burned area in response to 518 
anthropogenic and environmental factors: Reconstructing global fire history for the 20th 519 
and early 21st centuries. J. Geophys. Res. Biogeosciences 119, 249–263 (2014). 520 

45. Chen, Y., Morton, D. C., Andela, N., Giglio, L. & Randerson, J. T. How much global 521 
burned area can be forecast on seasonal time scales using sea surface temperatures? 522 
Environ. Res. Lett. 11, (2016). 523 

46. Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. 524 
Nat. Clim. Chang. 7, 906–911 (2017). 525 

47. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable 526 
biochar to mitigate global climate change. Nat. Commun. 1, 1–9 (2010). 527 

48. Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use 528 
and land cover change 1850–2015. Global Biogeochem. Cycles 31, 456–472 (2017). 529 

49. Surawski, N. C., Sullivan, A. L., Roxburgh, S. H., Meyer, C. P. M. & Polglase, P. J. 530 
Incorrect interpretation of carbon mass balance biases global vegetation fire emission 531 
estimates. Nat. Commun. 7, 1–5 (2016). 532 

50. Santín, C., Doerr, S. H., Preston, C. M. & González‐Rodríguez, G. Pyrogenic organic 533 
matter produced during wildfires can act as a carbon sink – a reply to Billings & 534 
Schlesinger (2015). Glob. Chang. Biol. 24, e399 (2018). 535 

51. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–536 
1362 (2017). 537 

52. Arora, V. K. & Melton, J. R. Reduction in global area burned and wildfire emissions 538 
since 1930s enhances carbon uptake by land. Nat. Commun. (2018). 539 
doi:10.1038/s41467-018-03838-0 540 

53. Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium 541 
and the forthcoming century. Proc. Natl. Acad. Sci. 107, 19167–19170 (2010). 542 



Submitted manuscript draft of version of: Jones, M.W., Santín, C., van der Werf, G.R., Doerr, S.H. 
(2019) Global fire emissions buffered by the production of recalcitrant pyrogenic carbon. Nature 
Geoscience (published on 5th Aug. 2019, available at: https://doi.org/10.1038/s41561-019-0403-
x). Note that the published version will be an updated version from this submitted draft.  
 

54. Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. 543 
Clim. Chang. 6, 781–785 (2016). 544 

55. Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. 545 
Manage. 294, 54–61 (2013). 546 

56. Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: 547 
climate change implications. Clim. Change 134, 59–71 (2016). 548 

57. Wang, X. et al. Projected changes in daily fire spread across Canada over the next 549 
century. Environ. Res. Lett. 12, (2017). 550 

58. Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of 551 
Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018). 552 

59. Krawchuk, M. A. & Moritz, M. A. Burning issues: statistical analyses of global fire data 553 
to inform assessments of environmental change. Environmetrics 25, 472–481 (2014). 554 

60. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual 555 
burned area using the fourth-generation global fire emissions database (GFED4). J. 556 
Geophys. Res. Biogeosciences 118, 317–328 (2013). 557 

61. Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. Global 558 
burned area and biomass burning emissions from small fires. J. Geophys. Res. 559 
Biogeosciences 117, (2012). 560 

62. van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement 561 
database. Biogeosciences Discuss. 11, 8115–8180 (2014). 562 

63. Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic 563 
effects. Earth-Science Rev. 130, 103–127 (2014). 564 

64. Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C. & Morgan, P. The 565 
combustion of sound and rotten coarse woody debris: a review. Int. J. Wildl. Fire 20, 566 
163 (2011). 567 

65. Lutes, D. C., Keane, R. E. & Caratti, J. F. A surface fuel classification for estimating fire 568 
effects. Int. J. Wildl. Fire 18, 802 (2009). 569 

66. Sandberg, D. V., Ottmar, R. D. & Cushon, G. H. Characterizing fuels in the 21st 570 
Century. Int. J. Wildl. Fire 10, 381 (2001). 571 

67. Knicker, H., Hilscher, A., González-Vila, F. J. & Almendros, G. A new conceptual model 572 
for the structural properties of char produced during vegetation fires. Org. Geochem. 573 
39, 935–939 (2008). 574 

68. Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. 575 
Glob. Ecol. Biogeogr. 23, 297–310 (2014). 576 

69. Friedl, M., Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly 577 
L3 Global 0.05Deg CMG V006. (2015). doi:10.5067/MODIS/MCD12C1.006 578 

70. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, 579 
savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 580 
11707–11735 (2010). 581 

71. van der Werf, G. R. et al. Interannual variability in global biomass burning emissions 582 
from 1997 to 2004. Atmos. Chem. Phys. 3423–3441 (2006). 583 

 584 
Supplementary Information is linked to the online version of the paper at 585 

www.nature.com/nature. 586 

 587 



Submitted manuscript draft of version of: Jones, M.W., Santín, C., van der Werf, G.R., Doerr, S.H. 
(2019) Global fire emissions buffered by the production of recalcitrant pyrogenic carbon. Nature 
Geoscience (published on 5th Aug. 2019, available at: https://doi.org/10.1038/s41561-019-0403-
x). Note that the published version will be an updated version from this submitted draft.  
 

Acknowledgements 588 

This work was funded by the Leverhulme Trust Grant awarded to SD (RPG-2014-095); 589 

a Swansea University College of Science Fund awarded to MJ; a Vici grant awarded to GW 590 

by the Netherlands organisation for scientific research (NWO), and a European Union 591 

Horizon 2020 research and innovation grant awarded to CS (Marie Skłodowska-Curie grant 592 

663830). We thank Cristina Aponte, Claudia Boot, Gareth Clay, Garry Cook, Francesca 593 

Cotrufo, Philip Fearnside, Brett Goforth, Robert Graham, Michelle Haddix, Peter Homann, 594 

Dale Hurst and Meaghan Jenkins for their assistance during the collation of the global dataset 595 

of PyC production factors. We also thank Dr. Bill de Groot for his part in securing funding of 596 

the Leverhulme Trust Grant. 597 

Author Contributions 598 

MJ, CS and SD designed the study. SD led the Leverhulme Trust grant funding the 599 

majority of the work. MJ collated the PyC production factor dataset with support from CS. CS 600 

and SD provided unpublished PyC production data. GW provided access to the GFED4s 601 

code. MJ adapted the GFED4s code to include PyC production with the support of GW. MJ 602 

conducted the formal analysis of production factor dataset and model outputs. All authors 603 

contributed to the interpretation of the results. MJ wrote the manuscript text and produced all 604 

figures. All authors contributed to the refinement of the manuscript text. 605 

Author Information 606 

Reprints and permissions information is available at www.nature.com/reprints. The 607 

authors declare no competing interests. Correspondence and requests for materials should 608 

be addressed to matthew.w.jones@swansea.ac.uk. The global dataset of PyC production 609 

factors is available as supplementary data file (GlobalPyC_supplementarydataset.xls) and 610 

will also be made publicly available through submission to the Pangaea Data Publisher for 611 

Earth & Environmental Science. Supplementary informaion text S4 contains full reference to 612 

the studies included in the production factor dataset. 613 


