123 research outputs found

    Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions.

    Get PDF
    It is proposed that fault textures in two dissected rhyolitic conduits in Iceland preserve evidence for shallow seismogenic faulting within rising magma during the emplacement of highly viscous lava flows. Detailed field and petrographic analysis of such textures may shed light on the origin of long-period and hybrid volcanic earthquakes at active volcanoes. There is evidence at each conduit investigated for multiple seismogenic cycles, each of which involved four distinct evolutionary phases. In phase 1, shear fracture of unrelaxed magma was triggered by shear stress accumulation during viscous flow, forming the angular fracture networks that initiated faulting cycles. Transient pressure gradients were generated as the fractures opened, which led to fluidisation and clastic deposition of fine-grained particles that were derived from the fracture walls by abrasion. Fracture networks then progressively coalesced and rotated during subsequent slip (phase 2), developing into cataclasite zones with evidence for multiple localised slip events, fluidisation and grain size reduction. Phase 2 textures closely resemble those formed on seismogenic tectonic faults characterised by friction-controlled stick-slip behaviour. Increasing cohesion of cataclasites then led to aseismic, distributed ductile deformation (phase 3) and generated deformed cataclasite zones, which are enriched in metallic oxide microlites and resemble glassy pseudotachylite. Continued annealing and deformation eventually erased all structures in the cataclasite and formed microlite-rich flow bands in obsidian (phase 4). Overall, the mixed brittle-ductile textures formed in the magma appear similar to those formed in lower crustal rocks close to the brittle-ductile transition, with the rheological response mediated by strain-rate variations and frictional heating. Fault processes in highly viscous magma are compared with those elsewhere in the crust, and this comparison is used to appraise existing models of volcano seismic activity. Based on the textures observed, it is suggested that patterns of long-period and hybrid earthquakes at silicic lava domes reflect friction-controlled stick-slip movement and eventual healing of fault zones in magma, which are an accelerated and smaller-scale analogue of tectonic faults

    Compressibility of titanosilicate melts

    Get PDF
    The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility

    Volcanic ash ice-nucleating activity can be enhanced or depressed by ash-gas interaction in the eruption plume

    Get PDF
    Volcanic ash can trigger ice nucleation when immersed in supercooled water. This will impact several processes (e.g., electrification, aggregation, precipitation) in the eruption plume and cloud and in the wider atmosphere upon ash dispersal. Previous studies show that ash bulk properties, reflecting the chemistry and phase state of the source magma, likely contribute to the ice-nucleating activity (INA) of ash. However, it remains unexplored how interaction with magmatic gases in the hot eruption plume, which inevitably leads to altered ash surface properties, affects the ash INA. Here we demonstrate that the INA of tephra is raised by exposure to H2O(g) mixed with SO2(g) at both 800 and 400 °C, but is substantially reduced by exposure to H2O(g) alone or mixed with HCl(g) at the same temperatures. In contrast, the INA of K-feldspar and quartz is reduced by all three eruption plume processing treatments. The decrease in INA of all silicates after heating with H2O(g) might relate to a loss of ice-active sites by surface dehydroxylation and/or oxidation. In the presence of HCl(g) or SO2(g), respectively, metal chloride or sulphate salts form on the tephra surfaces only. While NaCl and CaCl2 seem to have no effect on the tephra INA, CaSO4 is inferred to create ice-active sites, potentially through a particular combination of surface chemistry and topography. Overall, our findings suggest a complex interplay of bulk mineralogy and surface alteration in influencing ice nucleation by volcanic ash, and highlight the general sensitivity (enhancement or depression) of ash INA to interaction with magmatic gases in the eruption plume

    Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines

    Get PDF
    © 2019 The turbine technology incorporated in jet engines is inherently vulnerable to attack by environmental silicate debris. Amongst the various kinds of such debris, volcanic ash is a particular threat as its glass softens to a liquid at temperatures of 500–800 °C, far below jet engine operating temperatures of ∼1500 °C. As a result, ingested re-molten droplets impact and form splats on the protective thermal barrier coatings (TBCs). Investigation of the damage to jet engines ensuing from this process has, to date been restricted to forensic observations after critical encounters. Here, we employ a thermal spray technology to recreate the ‘in-situ’ generation of molten volcanic ash droplets and observe their morphological evolution and interaction with TBCs. The mechanism of splat formation is found to depend both on substrate topography and on in-flight droplet characteristics, whereby splat circularity increases with surface roughness and with the product of the Weber and Reynolds numbers. The experiments reveal that the molten ash droplet adhesion rate is dictated by droplet temperature and viscosity, ash concentration and substrate roughness. A new dimensionless number, S, is developed to quantify the molten ash droplet adhesion rate to both substrate topography and in-flight droplet characteristics. These findings provide a greatly improved basis for the quantification of the hazard potential of volcanic ash to jet engines and should be incorporated into protocols for operational aviation response during volcanic crises

    Eruptive shearing of tube pumice: pure and simple

    Get PDF
    Abstract. Understanding the physico-chemical conditions extant and mechanisms operative during explosive volcanism is essential for reliable forecasting and mitigation of volcanic events. Rhyolitic pumices reflect highly vesiculated magma whose bubbles can serve as a strain indicator for inferring the state of stress operative immediately prior to eruptive fragmentation. Obtaining the full kinematic picture reflected in bubble population geometry has been extremely difficult, involving dissection of a small number of delicate samples. The advent of reliable high-resolution tomography has changed this situation radically. Here we demonstrate via the use of tomography how a statistically powerful picture of the shapes and connectivity of thousands of individual bubbles within a single sample of tube pumice emerges. The strain record of tube pumice is dominated by simple shear (not pure shear) in the late deformational history of vesicular magma before eruption. This constraint in turn implies that magma ascent is conditioned by a velocity gradient at the point of origin of tube pumice. Magma ascent accompanied by simple shear should enhance high eruption rates inferred independently for these highly viscous systems. </jats:p

    Fluidal pyroclasts reveal the intensity of peralkaline rhyolite pumice cone eruptions

    Get PDF
    This work is a contribution to the Natural Environment Research Council (NERC) funded RiftVolc project (NE/L013932/1, Rift volcanism: past, present and future) through which several of the authors are supported. In addition, Clarke was funded by a NERC doctoral training partnership grant (NE/L002558/1).Peralkaline rhyolites are medium to low viscosity, volatile-rich magmas typically associated with rift zones and extensional settings. The dynamics of peralkaline rhyolite eruptions remain elusive with no direct observations recorded, significantly hindering the assessment of hazard and risk. Here we describe uniquely-preserved, fluidal-shaped pyroclasts found within pumice cone deposits at Aluto, a peralkaline rhyolite caldera in the Main Ethiopian Rift. We use a combination of field-observations, geochemistry, X-ray computed microtomography (XCT) and thermal-modelling to investigate how these pyroclasts are formed. We find that they deform during flight and, depending on size, quench prior to deposition or continue to inflate then quench in-situ. These findings reveal important characteristics of the eruptions that gave rise to them: that despite the relatively low viscosity of these magmas, and similarities to basaltic scoria-cone deposits, moderate to intense, unstable, eruption columns are developed; meaning that such eruptions can generate extensive tephra-fall and pyroclastic density currents.Publisher PDFPeer reviewe

    Topological inversions in coalescing granular media control fluid-flow regimes

    Get PDF
    Sintering—or coalescence—of viscous droplets is an essential process in many natural and industrial scenarios. Current physical models of the dynamics of sintering are limited by the lack of an explicit account of the evolution of microstructural geometry. Here, we use high-speed time-resolved x-ray tomography to image the evolving geometry of a sintering system of viscous droplets, and use lattice Boltzmann simulations of creeping fluid flow through the reconstructed pore space to determine its permeability. We identify and characterize a topological inversion, from spherical droplets in a continuous interstitial gas, to isolated bubbles in a continuous liquid. We find that the topological inversion is associated with a transition in permeability-porosity behavior, from Stokes permeability at high porosity, to percolation theory at low porosity. We use these findings to construct a unified physical description that reconciles previously incompatible models for the evolution of porosity and permeability during sintering

    Rapid ascent of rhyolitic magma at Chaitén volcano, Chile

    Get PDF
    International audienceAlthough rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions, our understanding of these events is incomplete due to the previous lack of direct observation of these eruptions. On 1 May 2008, Chaitén volcano in Chile erupted rhyolite magma unexpectedly and explosively. Here, petrological and experimental data are presented that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly from storage depth to near-surface, with velocities of the order of one metre per second
    • …
    corecore