104 research outputs found
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans
While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function
Tumour necrosis factor and PI3-kinase control oestrogen receptor alpha protein level and its transrepression function
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410160
Total antioxidant capacity is associated with mortality of patients with severe traumatic brain injury
Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms
Oxidative protein labeling in mass-spectrometry-based proteomics
Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)–mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade
TRY plant trait database - enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Conservation priorities of useful plants from different techniques of collection and analysis of ethnobotanical data
This study analyzes three methods of data analysis to verify which one would be more appropriate to get information aiming the conservation, selecting the use value (VU) inventory in situ and conservation property index (IPC). It was developed in in Northeast Brazil, via interviewed householders (46 informants). The VU was calculated considering only the effective use of plants; the inventory in situ was made through the frequency of species occurrence in homes; and the IPC combining ethnobotanical and phytossociological data. It was observed a similar cast of the indicated species by VU and inventory in situ, being different from the IPC cast. As this study sought to analyze the best technique for species identification which were needing conservationist actions, and obtained different results among the chosen methods. It has been suggested the use of methods that unite in their analysis both ethnobotanical and ecological aspects, like in the plants list from the priority index of conservation, which demonstrated to be more efficient to identify rare species in the local vegetation. The VU and the inventory in situ are more efficient to identify the most known and used species in the communities, however without analyzing these plants in the local vegetation
Extracellular micronutrient levels and pro-/antioxidant status in trauma patients with wound healing disorders: results of a cross-sectional study
Analysis of protein carbonylation - pitfalls and promise in commonly used methods
Abstract Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the patho-physiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientist became more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods
- …
