85 research outputs found

    European Sea Bass (Dicentrarchus labrax) immune status and disease resistance are impaired by arginine dietary supplementation

    Get PDF
    Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.European Union's Seventh Framework Programme AQUAEXCEL (Aquaculture Infrastructures for Excellence in European Fish Research) [262336]; AQUAIMPROV [NORTE-07-0124-FEDER-000038]; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte) , under the National Strategic Reference Framework, through the European Regional Development Fund; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte), under the National Strategic Reference Framework through the COMPETE - Operational Competitiveness Programme; Fundacao para a Ciencia e Tecnologia; Fundacao para a Ciencia e Tecnologia [SFRH/BD/89457/2012, SFRH/BPD/77210/2011]; Generalitat Valenciana through the project REVIDPAQUA [ISIC/2012/003]; [PEst-C/MAR/LA0015/2013]; [UID/Multi/04423/2013]info:eu-repo/semantics/publishedVersio

    Successful implementation of new technologies in nursing care: a questionnaire survey of nurse-users

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing number of new technologies are becoming available within nursing care that can improve the quality of care, reduce costs, or enhance working conditions. However, such effects can only be achieved if technologies are used as intended. The aim of this study is to gain a better understanding of determinants influencing the success of the introduction of new technologies as perceived by nursing staff.</p> <p>Methods</p> <p>The study population is a nationally representative research sample of nursing staff (further referred to as the Nursing Staff Panel), of whom 685 (67%) completed a survey questionnaire about their experiences with recently introduced technologies. Participants were working in Dutch hospitals, psychiatric organizations, care organizations for mentally disabled people, home care organizations, nursing homes or homes for the elderly.</p> <p>Results</p> <p>Half of the respondents were confronted with the introduction of a new technology in the last three years. Only half of these rated the introduction of the technology as positive.</p> <p>The factors most frequently mentioned as impeding actual use were related to the (kind of) technology itself, such as malfunctioning, ease of use, relevance for patients, and risks to patients. Furthermore nursing staff stress the importance of an adequate innovation strategy.</p> <p>Conclusions</p> <p>A prerequisite for the successful introduction of new technologies is to analyse determinants that may impede or enhance the introduction among potential users. For technological innovations special attention has to be paid to the (perceived) characteristics of the technology itself.</p

    Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity

    Get PDF
    Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activityAntimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.The authors thank T.T. Diagana (Novartis Institute for Tropical Diseases, Singapore) for provision of the compounds, the Red Cross (Australia and the USA) for the provision of human blood for cell cultures, and G. Stevenson for assistance with the triaging of compounds following screening. The authors acknowledge the Bill and Melinda Gates Foundation (grant OPP1040399 to D.A.F. and V.M.A. and grant OPP1054480 to E.A.W. and D.A.F.), the National Institutes of Health (grant R01 AI103058 to E.A.W. and D.A.F., grant R01 AI50234 to D.A.F, and R01 AI110329 to T.J.E.), the Australian Research Council (LP120200557 to V.M.A.) and the Medicines for Malaria Venture for their continued support. P.E.F. and M.I.V. are supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).info:eu-repo/semantics/publishedVersio

    A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development

    Get PDF
    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing

    Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Get PDF
    Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already used by the community. This first step forms a solid basis of observations, before moving to in vivo pharmacological characterization and ultimately identifying the active ingredient. A large part of the population uses herbal medicinal products despite limited numbers of well-controlled clinical studies. Increased awareness by the regulators and public health bodies of the need for safety information on herbal medicinal products also lends support to obtaining more clinical data on such products. Conclusions The relative paucity of new herbal medicinal product scaffolds active against malaria results discovered in recent years suggest it is time to re-evaluate the ‘smash and grab’ approach of randomly testing purified natural products and replace it with a patient-data led approach. This will require a change of perspective form many in the field. It will require an investment in standardisation in several areas, including: the ethnopharmacology and design and reporting of clinical observation studies, systems for characterizing anti-malarial activity of patient plasma samples ex vivo followed by chemical and pharmacological characterisation of extracts from promising sources. Such work falls outside of the core mandate of the product development partnerships, such as MMV, and so will require additional support. This call is timely, given the strong interest from researchers in disease endemic countries to support the research arm of a malaria eradication agenda. Para-national institutions such as the African Network for Drugs and Diagnostics Innovation (ANDi) will play a major role in facilitating the development of their natural products patrimony and possibly clinical best practice to bring forward new therapeutics. As in the past, with quinine, lapinone and artemisinin, once the activity of herbal medicinal products in humans is characterised, it can be used to identify new molecular scaffolds which will form the basis of the next generation of anti-malarial therapies.</p
    corecore