11,810 research outputs found

    Detectability of low-oxygenated regions in human muscle tissue using near-infrared spectroscopy and phantom models

    Get PDF
    The present work aims to describe the detectability limits of hypoxic regions in human muscle under moderate thicknesses of adipose tissue to serve as a groundwork for the development of a wearable device to prevent pressure injuries. The optimal source-detector distances, detection limits, and the spatial resolution of hypoxic volumes in the human muscle are calculated using finite element method-based computer simulations conducted on 3-layer tissue models. Silicone phantoms matching the simulation geometries were manufactured, and their measurement results were compared to the simulations. The simulations showed good agreement with the performed experiments. Our results show detectability of hypoxic volumes under adipose tissue thicknesses of up to 1.5 cm. The maximum tissue depth, at which hypoxic volumes could be detected was 2.8 cm. The smallest detectable hypoxic volume in our study was 1.2 cm3. We thus show the detectability of hypoxic volumes in sizes consistent with those of early-stage pressure injury formation and, consequently, the feasibility of a device to prevent pressure injuries

    Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    Get PDF
    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the Restricted Active Space Self-Consistent Field method including spin-orbit coupling is used to cope with this challenge and to calculate valence and core photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6]2+\text{[Fe(H}_2\text{O)}_6\text{]}^{2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments

    Annexins as cell-type-specific markers in the developing chicken chorionallantoic membrane

    Get PDF
    Between day E8 and E12 of embryonic development, the chicken chorioallantoic membrane (CAM) undergoes massive structural rearrangement enabling calcium-uptake from the eggshell to supply the growing embryo. However, the contribution of the various cell types of the chorionic epithelium including the capillary covering (CC) cells, villus cavity (VC) cells, endothelial-like cells, and basal cells to this developmental program is largely unknown. In order to obtain markers for the different cell types in the chorionic epithelium, we determined the expression patterns of various calcium-binding annexins in the developing chicken CAM. By reverse transcription/polymerase chain reaction with primers deduced from nucleotide sequences available in various databases, the presence of annexin (anx)-1, anx-2, anx-5, and anx-6 was demonstrated at days E8 and E12. Quantitative immunoblotting with novel antibodies raised against the recombinant proteins revealed that anx-1 and anx-5 were significantly up-regulated at day E12, whereas anx-2 and anx-6 expression remained almost unchanged in comparison to levels at day E8. Immunohistochemistry of paraffin-embedded sections of E12 CAM revealed anx-1 in CC cells and VC cells. Anx-2 was localized in capillaries in the chorionic epithelium and in basal cells of the allantoic epithelium, whereas anx-6 was detected in basal cells or endothelial-like cells of the chorionic epithelium and in the media of larger vessels in the mesenchyme. A 2-day exposure of the CAM to a tumor cell spheroid resulted in strong proliferation of anx-1-expressing CC cells suggesting that these cells participate in the embryonic response to experimental intervention. Thus, annexins exhibit complementary expression patterns and represent appropriate cell markers for the further characterization of CAM development and the interpretation of results obtained when using CAM as an experimental mode

    Introduction: Disease reservoirs : from colonial medicine to one health

    Get PDF
    Funding: Wellcome Trust, Canadian Institute for Advance Research, Agence Nationale de la Recherche.The introduction of the special issue “Disease Reservoirs: Anthropological and Historical Approaches” sets out the origins and trajectories of disease reservoir frameworks. First, it charts the emergence and elaborations of the reservoirs concept within and across early 20th-century colonial contexts, emphasising its configuration within imperial projects that sought to identify, map and control spaces of contagion among humans, animals, and pathogens. Following this, it traces the position the reservoir framework assumed within post-colonial practices and imaginaries of global health, with particular reference to the emerging infectious disease paradigm. The introduction shows that, in contemporary usages, while the concept continues to frame animals, humans and their bodies as containers of previously identified pathogens, it also emphasises the imperative of anticipating as-of-yet unknown diseases, harboured in the bodies of certain animals, through networks and techniques of surveillance. Consequently, the introduction argues that the notion of disease reservoirs remains intimately intertwined with concerns over the classification, organization, and management of peoples, pathogens, animals, and space. Finally, the introduction outlines the seven papers that form this special issue, stressing how they dialogue, complement, and challenge previous historical and anthropological approaches to disease reservoirs, with an eye to opening up new avenues for cross-disciplinary exploration.Publisher PDFPeer reviewe

    Rapid one-step biotinylation of biological and non-biological surfaces

    Get PDF
    We describe a rapid one-step method to biotinylate virtually any biological or non-biological surface. Contacting a solution of biotin-spacer-lipid constructs with a surface will form a coating within seconds on non-biological surfaces or within minutes on most biological membranes including membrane viruses. The resultant biotinylated surface can then be used to interact with avidinylated conjugates, beads, vesicles, surfaces or cells

    Situation awareness: Valid or fallacious?

    Get PDF

    Measuring the vertical profile of leaf wetness in a forest canopy

    Get PDF
    Plant canopies are wet for substantial amounts of time and this influences physiological performance and fluxes of energy, carbon and water at the ecosystem level. Leaf wetness sensors enable us to quantify the duration of leaf wetness and spatially map this to canopy structure. However, manually analysing leaf wetness data from plot-level experiments can be time-consuming, and requires a degree of subjective judgement in delineating wetness events which can lead to inconsistencies in the analysis. Here we: • Describe how to set up an array of leaf wetness sensors (Phytos 31, Meter) enabling the measurement of leaf wetness duration through the profile of a forest canopy, • Present a method and R script to objectively identify and distinguish periods of rain and dew from the output of leaf wetness sensors, • Provide a criteria for separating the leaf wetness sensor output into dew and rain events which may form a reference standard, or be modified for use, in future studies
    corecore