419 research outputs found

    Phase Separation and the Dual Nature of the Electronic Structure in Cuprates

    Full text link
    The dual nature of the electronic structure of stripes in La2xSrxCuO4La_{2-x}Sr_xCuO_4 was characterized by experimental observations, mainly by ARPES, of nodal spectral weight together with the straight segments near antinodal regions. We present here an attempt to understand this dual behavior in terms of the competition of order and disorder, by applying the phase separation theory of Cahn-Hilliard (CH) to the high pseudogap temperature, which is very large in the far underdoping region and vanishs near the doping level p=0.2. The spinodal phase separation predictions together with the Bogoliubov-deGennes (BdG) superconducting theory provides several interesting insights. For instance, we find that the disorder enhances the local superconducting gap which scales with the leading edge shift and that, upon doping, the size of the hole-rich stripes increases, yielding to the system their metallic properties.Comment: revised version, 4 pages and 3 fig

    Interlayer hopping properties of electrons in layered metals

    Full text link
    A formalism is proposed to study the electron tunneling between extended states, based on the spin-boson Hamiltonian previously used in two-level systems. It is applied to analyze the out--of--plane tunneling in layered metals considering different models. By studying the effects of in--plane interactions on the interlayer tunneling of electrons near the Fermi level, we establish the relation between departure from Fermi liquid behavior driven by electron correlations inside the layer and the out of plane coherence. Response functions, directly comparable with experimental data are obtained

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    An Automated and High Precision Quantitative Analysis of the ACR Phantom

    Get PDF
    A novel phantom-imaging platform for automated and high precision imaging of the American College of Radiology (ACR) PET phantom is proposed. The platform facilitates the generation of an accurate μ-map for PET/MR systems with a robust alignment based on two-stage image registration using specifically designed PET templates. The automated analysis of PET images uses a set of granular composite volume of interest (VOI) templates in a 0.5 mm resolution grid for sampling of the system response to the insert step functions. The impact of the activity outside the field of view (FOV) was evaluated using two acquisitions of 30 minutes each, with and without the activity outside the FOV. Iterative image reconstruction was employed with and without modelled shift-invariant point spread function (PSF) and varying ordered subsets expectation maximisation (OSEM) iterations. Uncertainty analysis of all image-derived statistics was performed using bootstrap resampling of the list-mode data. We found that the activity outside the FOV can adversely affect the imaging planes close to the edge of the axial FOV, reducing the contrast, background uniformity and overall quantitative accuracy. The PSF had a positive impact on contrast recovery (although it slows convergence). The proposed platform may be helpful in a more informative evaluation of PET systems and image reconstruction methods

    Advanced quantitative evaluation of PET systems using the ACR phantom and NiftyPET software

    Get PDF
    Purpose: A novel phantom-imaging platform, a set of software tools, for automated and high-precision imaging of the American College of Radiology (ACR) positron emission tomography (PET) phantom for PET/magnetic resonance (PET/MR) and PET/computed tomography (PET/CT) systems is proposed. Methods: The key feature of this platform is the vector graphics design that facilitates the automated measurement of the knife-edge response function and hence image resolution, using composite volume of interest templates in a 0.5 mm resolution grid applied to all inserts of the phantom. Furthermore, the proposed platform enables the generation of an accurate μ -map for PET/MR systems with a robust alignment based on two-stage image registration using specifically designed PET templates. The proposed platform is based on the open-source NiftyPET software package used to generate multiple list-mode data bootstrap realizations and image reconstructions to determine the precision of the two-stage registration and any image-derived statistics. For all the analyses, iterative image reconstruction was employed with and without modeled shift-invariant point spread function and with varying iterations of the ordered subsets expectation maximization (OSEM) algorithm. The impact of the activity outside the field of view (FOV) was assessed using two acquisitions of 30 min each, with and without the activity outside the FOV. Results: The utility of the platform has been demonstrated by providing a standard and an advanced phantom analysis including the estimation of spatial resolution using all cylindrical inserts. In the imaging planes close to the edge of the axial FOV, we observed deterioration in the quantitative accuracy, reduced resolution (FWHM increased by 1–2 mm), reduced contrast, and background uniformity due to the activity outside the FOV. Although it slows convergence, the PSF reconstruction had a positive impact on resolution and contrast recovery, but the degree of improvement depended on the regions. The uncertainty analysis based on bootstrap resampling of raw PET data indicated high precision of the two-stage registration. Conclusions: We demonstrated that phantom imaging using the proposed methodology with the metric of spatial resolution and multiple bootstrap realizations may be helpful in more accurate evaluation of PET systems as well as in facilitating fine tuning for optimal imaging parameters in PET/MR and PET/CT clinical research studies

    Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging

    Get PDF
    Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners

    Sequencing chemotherapy and radiotherapy in locoregional advanced breast cancer patients after mastectomy – a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combined chemo- and radiotherapy are established in breast cancer treatment. Chemotherapy is recommended prior to radiotherapy but decisive data on the optimal sequence are rare. This retrospective analysis aimed to assess the role of sequencing in patients after mastectomy because of advanced locoregional disease.</p> <p>Methods</p> <p>A total of 212 eligible patients had a stage III breast cancer and had adjuvant chemotherapy and radiotherapy after mastectomy and axillary dissection between 1996 and 2004. According to concerted multi-modality treatment strategies 86 patients were treated sequentially (chemotherapy followed by radiotherapy) (SEQgroup), 70 patients had a sandwich treatment (SW-group) and 56 patients had simultaneous chemoradiation (SIM-group) during that time period. Radiotherapy comprised the thoracic wall and/or regional lymph nodes. The total dose was 45–50.4 Gray. As simultaneous chemoradiation CMF was given in 95.4% of patients while in sequential or sandwich application in 86% and 87.1% of patients an anthracycline-based chemotherapy was given.</p> <p>Results</p> <p>Concerning the parameters nodal involvement, lymphovascular invasion, extracapsular spread and extension of the irradiated region the three treatment groups were significantly imbalanced. The other parameters, e.g. age, pathological tumor stage, grading and receptor status were homogeneously distributed. Looking on those two groups with an equally effective chemotherapy (EC, FEC), the SEQ- and SW-group, the sole imbalance was the extension of LVI (57.1 vs. 25.6%, p < 0.0001).</p> <p>5-year overall- and disease free survival were 53.2%/56%, 38.1%/32% and 64.2%/50%, for the sequential, sandwich and simultaneous regime, respectively, which differed significantly in the univariate analysis (p = 0.04 and p = 0.03, log-rank test). Also the 5-year locoregional or distant recurrence free survival showed no significant differences according to the sequence of chemo- and radiotherapy. In the multivariate analyses the sequence had no independent impact on overall survival (p = 0.2) or disease free survival (p = 0.4). The toxicity, whether acute nor late, showed no significant differences in the three groups. The grade III/IV acute side effects were 3.6%, 0% and 3.5% for the SIM-, SW- and SEQ-group. By tendency the SIM regime had more late side effects.</p> <p>Conclusion</p> <p>No clear advantage can be stated for any radio- and chemotherapy sequence in breast cancer therapy so far. This could be confirmed in our retrospective analysis in high-risk patients after mastectomy. The sequential approach is recommended according to current guidelines considering a lower toxicity.</p

    Nutritional Asymmetries Are Related to Division of Labor in a Queenless Ant

    Get PDF
    Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage

    Evidence that Proteasome-Dependent Degradation of the Retinoblastoma Protein in Cells Lacking A-Type Lamins Occurs Independently of Gankyrin and MDM2

    Get PDF
    A-type lamins, predominantly lamins A and C, are nuclear intermediate filaments believed to act as scaffolds for assembly of transcription factors. Lamin A/C is necessary for the retinoblastoma protein (pRB) stabilization through unknown mechanism(s). Two oncoproteins, gankyrin and MDM2, are known to promote pRB degradation in other contexts. Consequently, we tested the hypothesis that gankyrin and/or MDM2 are required for enhanced pRB degradation in Lmna-/- fibroblasts. Principal Findings. To determine if gankyrin promotes pRB destabilization in the absence of lamin A/C, we first analyzed its protein levels in Lmna-/- fibroblasts. Both gankyrin mRNA levels and protein levels are increased in these cells, leading us to further investigate its role in pRB degradation. Consistent with prior reports, overexpression of gankyrin in Lmna+/+ cells destabilizes pRB. This decrease is functionally significant, since gankyrin overexpressing cells are resistant to p16(ink4a)-mediated cell cycle arrest. These findings suggest that lamin A-mediated degradation of pRB would be gankyrin-dependent. However, effective RNAi-enforced reduction of gankyrin expression in Lmna-/- cells was insufficient to restore pRB stability. To test the importance of MDM2, we disrupted the MDM2-pRB interaction by transfecting Lmna-/- cells with p14(arf). p14(arf) expression was also insufficient to stabilize pRB or confer cell cycle arrest, suggesting that MDM2 also does not mediate pRB degradation in Lmna-/- cells.Our findings suggest that pRB degradation in Lmna-/- cells occurs by gankyrin and MDM2-independent mechanisms, leading us to propose the existence of a third proteasome-dependent pathway for pRB degradation. Two findings from this study also increase the likelihood that lamin A/C functions as a tumor suppressor. First, protein levels of the oncoprotein gankyrin are elevated in Lmna-/- fibroblasts. Second, Lmna-/- cells are refractory to p14(arf)-mediated cell cycle arrest, as was previously shown with p16(ink4a). Potential roles of lamin A/C in the suppression of tumorigenesis are discussed

    Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization

    Get PDF
    Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data.Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte hemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+ IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4 ) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4 ). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB).This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)
    corecore