5,048 research outputs found

    Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study

    Get PDF
    Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults

    Get PDF
    AIMS: Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. METHODS: Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. RESULTS: The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. CONCLUSIONS: Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C

    Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex

    Get PDF
    Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity. Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −. Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine

    Circulating Fatty Acids and Risk of Coronary Heart Disease and Stroke: Individual Participant Data Meta-Analysis in Up to 16 126 Participants

    Get PDF
    BACKGROUND We aimed at investigating the association of circulating fatty acids with coronary heart disease (CHD) and stroke risk. METHODS AND RESULTS We conducted an individual‐participant data meta‐analysis of 5 UK‐based cohorts and 1 matched case‐control study. Fatty acids (ie, omega‐3 docosahexaenoic acid, omega‐6 linoleic acid, monounsaturated and saturated fatty acids) were measured at baseline using an automated high‐throughput serum nuclear magnetic resonance metabolomics platform. Data from 3022 incident CHD cases (13 104 controls) and 1606 incident stroke cases (13 369 controls) were included. Logistic regression was used to model the relation between fatty acids and odds of CHD and stroke, adjusting for demographic and lifestyle variables only (ie, minimally adjusted model) or with further adjustment for other fatty acids (ie, fully adjusted model). Although circulating docosahexaenoic acid, but not linoleic acid, was related to lower CHD risk in the fully adjusted model (odds ratio, 0.85; 95% CI, 0.76–0.95 per standard unit of docosahexaenoic acid), there was evidence of high between‐study heterogeneity and effect modification by study design. Stroke risk was consistently lower with increasing circulating linoleic acid (odds ratio for fully adjusted model, 0.82; 95% CI, 0.75–0.90). Circulating monounsaturated fatty acids were associated with higher CHD risk across all models and with stroke risk in the fully adjusted model (odds ratio, 1.22; 95% CI, 1.03–1.44). Saturated fatty acids were not related to increased CHD risk in the fully adjusted model (odds ratio, 0.94; 95% CI, 0.82–1.09), or stroke risk. CONCLUSIONS We found consistent evidence that linoleic acid was associated with decreased risk of stroke and that monounsaturated fatty acids were associated with increased risk of CHD. The different pattern between CHD and stroke in terms of fatty acids risk profile suggests future studies should be cautious about using composite events. Different study designs are needed to assess which, if any, of the associations observed is causal

    Differential distribution of a SINE element in the Entamoeba histolytica and Entamoeba dispar genomes: Role of the LINE-encoded endonuclease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Entamoeba histolytica </it>and <it>Entamoeba dispar </it>are closely related protistan parasites but while <it>E. histolytica </it>can be invasive, <it>E. dispar </it>is completely non pathogenic. Transposable elements constitute a significant portion of the genome in these species; there being three families of LINEs and SINEs. These elements can profoundly influence the expression of neighboring genes. Thus their genomic location can have important phenotypic consequences. A genome-wide comparison of the location of these elements in the <it>E. histolytica </it>and <it>E. dispar </it>genomes has not been carried out. It is also not known whether the retrotransposition machinery works similarly in both species. The present study was undertaken to address these issues.</p> <p>Results</p> <p>Here we extracted all genomic occurrences of full-length copies of EhSINE1 in the <it>E. histolytica </it>genome and matched them with the homologous regions in <it>E. dispar</it>, and vice versa, wherever it was possible to establish synteny. We found that only about 20% of syntenic sites were occupied by SINE1 in both species. We checked whether the different genomic location in the two species was due to differences in the activity of the LINE-encoded endonuclease which is required for nicking the target site. We found that the endonucleases of both species were essentially very similar, both in their kinetic properties and in their substrate sequence specificity. Hence the differential distribution of SINEs in these species is not likely to be influenced by the endonuclease. Further we found that the physical properties of the DNA sequences adjoining the insertion sites were similar in both species.</p> <p>Conclusions</p> <p>Our data shows that the basic retrotransposition machinery is conserved in these sibling species. SINEs may indeed have occupied all of the insertion sites in the genome of the common ancestor of <it>E. histolytica </it>and <it>E. dispar </it>but these may have been subsequently lost from some locations. Alternatively, SINE expansion took place after the divergence of the two species. The absence of SINE1 in 80% of syntenic loci could affect the phenotype of the two species, including their pathogenic properties, which needs to be explored.</p

    A G-quadruplex structure within the 5′-UTR of TRF2 mRNA represses translation in human cells

    Get PDF
    Telomeres protect chromosome ends from being recognized as double-stranded breaks. Telomeric function is ensured by the shelterin complex in which TRF2 protein is an essential player. The G-rich strand of telomere DNA can fold into G-quadruplex (G4) structure. Small molecules stabilizing G4 structures, named G4 ligands, have been shown to alter telomeric functions in human cells. In this study, we show that a guanine-rich RNA sequence located in the 5′-UTR region of the TRF2 mRNA (hereafter 91TRF2G) is capable of forming a stable quadruplex that causes a 2.8-fold decrease in the translation of a reporter gene in human cells, as compared to a mutant 5′-UTR unable to fold into G4. We also demonstrate that several highly selective G4 ligands, the pyridine dicarboxamide derivative 360A and bisquinolinium compounds Phen-DC(3) and Phen-DC(6), are able to bind the 91TRF2G:RNA sequence and to modulate TRF2 protein translation in vitro. Since the naturally occurring 5′-UTR TRF2:RNA G4 element was used here, which is conserved in several vertebrate orthologs, the present data substantiate a potential translational mechanism mediated by a G4 RNA motif for the downregulation of TRF2 expression
    corecore