2,773 research outputs found

    A model of macroevolution with a natural system size

    Get PDF
    We describe a simple model of evolution which incorporates the branching and extinction of species lines, and also includes abiotic influences. A first principles approach is taken in which the probability for speciation and extinction are defined purely in terms of the fitness landscapes of each species. Numerical simulations show that the total diversity fluctuates around a natural system size NnatN_{\rm nat} which only weakly depends upon the number of connections per species. This is in agreement with known data for real multispecies communities. The numerical results are confirmed by approximate mean field analysi

    Crossover to self-organized criticality in an inertial sandpile model

    Get PDF
    We introduce a one-dimensional sandpile model which incorporates particle inertia. The inertial dynamics are governed by a new parameter which, as it passes through a threshold value, alters the toppling dynamics in such a way that the system no longer evolves to a self-organized critical state. A range of mean-field theories based on a kinetic equation approach is presented which confirm the numerical findings. We conclude by considering the physical applications of this model, particularly with reference to recent experimental results

    Importance of non-affine viscoelastic response in disordered fibre networks

    Get PDF
    Disordered fibre networks are ubiquitous in nature and have a wide range of industrial applications as novel biomaterials. Predicting their viscoelastic response is straightforward for affine deformations that are uniform over all length scales, but when affinity fails, as has been observed experimentally, modelling becomes challenging. Here we present a numerical methodology, related to an existing framework for amorphous packings, to predict the steady-state viscoelastic spectra and degree of affinity for disordered fibre networks driven at arbitrary frequencies. Applying this method to a peptide gel model reveals a monotonic increase of the shear modulus as the soft, non-affine normal modes are successively suppressed as the driving frequency increases. In addition to being dominated by fibril bending, these low frequency network modes are also shown to be delocalised. The presented methodology provides insights into the importance of non-affinity in the viscoelastic response of peptide gels, and is easily extendible to all types of fibre networks

    Strain-controlled criticality governs the nonlinear mechanics of fibre networks

    Full text link
    Disordered fibrous networks are ubiquitous in nature as major structural components of living cells and tissues. The mechanical stability of networks generally depends on the degree of connectivity: only when the average number of connections between nodes exceeds the isostatic threshold are networks stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing the connectivity through this point, such networks undergo a mechanical phase transition from a floppy to a rigid phase. However, even sub-isostatic networks become rigid when subjected to sufficiently large deformations. To study this strain-controlled transition, we perform a combination of computational modeling of fibre networks and experiments on networks of type I collagen fibers, which are crucial for the integrity of biological tissues. We show theoretically that the development of rigidity is characterized by a strain-controlled continuous phase transition with signatures of criticality. Our experiments demonstrate mechanical properties consistent with our model, including the predicted critical exponents. We show that the nonlinear mechanics of collagen networks can be quantitatively captured by the predictions of scaling theory for the strain-controlled critical behavior over a wide range of network concentrations and strains up to failure of the material

    The impact of electrode resistance on the biogalvanic characterisation technique

    Get PDF
    Measurement of a tissue-specific electrical resistance may offer a discriminatory metric for evaluation of tissue health during cancer surgery. With a move toward minimally invasive procedures, applicable contact sensing modalities must be scalable, fast and robust. A passive resistance characterisation method utilising a biogalvanic cell as an intrinsic power source has been proposed as a potentially suitable solution. Previous work has evaluated this system with results showing effective discrimination of tissue type and damage (through electroporation). However, aspects of the biogalvanic cell have been found to influence the characterisation performance, and are not currently accounted for within the system model. In particular, the electrode and salt-bridge resistance are not independently determined, leading to over predictions of tissue resistivity. This paper describes a more comprehensive model and characterisation scheme, with electrode parameters and salt-bridge resistivity being evaluated independently. In a generalised form, the presented model illustrates how the relative resistive contributions from the electrodes and medium relate to the existing characterisation method efficacy. We also describe experiments with physiologically relevant salt solutions (1.71, 17.1, 154 mM), used for validation and comparison. The presented model shows improved performance over the current biogalvanic measurement technique at the median conductivity. Both systems become unable to predict conductivity accurately at high conductivity due to the dominance of the electrode parameters. The characterisation techniques have also been applied to data collected on freshly excised human colon tissue (healthy and cancerous). The findings suggest that the resistance of the cell under the test conditions is electrode dominated, leading to erroneous tissue resistance determination. Measurement optimisation strategies and the surgical applicability of the biogalvanic technique are discussed in light of these findings

    Cardiovascular disease in a cohort exposed to the 1940-45 Channel Islands occupation

    Get PDF
    BACKGROUND To clarify the nature of the relationship between food deprivation/undernutrition during pre- and postnatal development and cardiovascular disease (CVD) in later life, this study examined the relationship between birth weight (as a marker of prenatal nutrition) and the incidence of hospital admissions for CVD from 1997–2005 amongst 873 Guernsey islanders (born in 1923–1937), 225 of whom had been exposed to food deprivation as children, adolescents or young adults (i.e. postnatal undernutrition) during the 1940–45 German occupation of the Channel Islands, and 648 of whom had left or been evacuated from the islands before the occupation began. METHODS Three sets of Cox regression models were used to investigate (A) the relationship between birth weight and CVD, (B) the relationship between postnatal exposure to the occupation and CVD and (C) any interaction between birth weight, postnatal exposure to the occupation and CVD. These models also tested for any interactions between birth weight and sex, and postnatal exposure to the occupation and parish of residence at birth (as a marker of parish residence during the occupation and related variation in the severity of food deprivation). RESULTS The first set of models (A) found no relationship between birth weight and CVD even after adjustment for potential confounders (hazard ratio (HR) per kg increase in birth weight: 1.12; 95% confidence intervals (CI): 0.70 – 1.78), and there was no significant interaction between birth weight and sex (p = 0.60). The second set of models (B) found a significant relationship between postnatal exposure to the occupation and CVD after adjustment for potential confounders (HR for exposed vs. unexposed group: 2.52; 95% CI: 1.54 – 4.13), as well as a significant interaction between postnatal exposure to the occupation and parish of residence at birth (p = 0.01), such that those born in urban parishes (where food deprivation was worst) had a greater HR for CVD than those born in rural parishes. The third model (C) found no interaction between birth weight and exposure to the occupation (p = 0.43). CONCLUSION These findings suggest that the levels of postnatal undernutrition experienced by children, adolescents and young adults exposed to food deprivation during the 1940–45 occupation of the Channel Islands were a more important determinant of CVD in later life than the levels of prenatal undernutrition experienced in utero prior to the occupatio

    Binaural specialisation in human auditory cortex: an fMRI investigation of interaural correlation sensitivity

    Get PDF
    A listener's sensitivity to the interaural correlation (IAC) of sound plays an important role in several phenomena in binaural hearing. Although IAC has been examined extensively in neurophysiological studies in animals and in psychophysical studies in humans, little is known about the neural basis of sensitivity to IAC in humans. The present study employed functional magnetic resonance imaging to measure blood oxygen level-dependent (BOLD) activity in auditory brainstem and cortical structures in human listeners during presentation of band-pass noise stimuli between which IAC was varied systematically. The stimuli evoked significant bilateral activation in the inferior colliculus, medial geniculate body, and auditory cortex. There was a significant positive relationship between BOLD activity and IAC which was confined to a distinct subregion of primary auditory cortex located bilaterally at the lateral extent of Heschl's gyrus. Comparison with published anatomical data indicated that this area may also be cytoarchitecturally distinct. Larger differences in activation were found between levels of IAC near unity than between levels near zero. This response pattern is qualitatively compatible with previous measures of psychophysical and neurophysiological sensitivity to IAC

    Nonlinear Elasticity in Biological Gels

    Full text link
    Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.Comment: 23 pages, 5 figures, submitted to Natur

    Sensitivity of the stress response function to packing preparation

    Full text link
    A granular assembly composed of a collection of identical grains may pack under different microscopic configurations with microscopic features that are sensitive to the preparation history. A given configuration may also change in response to external actions such as compression, shearing etc. We show using a mechanical response function method developed experimentally and numerically, that the macroscopic stress profiles are strongly dependent on these preparation procedures. These results were obtained for both two and three dimensions. The method reveals that, under a given preparation history, the macroscopic symmetries of the granular material is affected and in most cases significant departures from isotropy should be observed. This suggests a new path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J. Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor

    Semantic diversity:A measure of contextual variation in word meaning based on latent semantic analysis

    Get PDF
    Semantic ambiguity is typically measured by summing the number of senses or dictionary definitions that a word has. Such measures are somewhat subjective and may not adequately capture the full extent of variation in word meaning, particularly for polysemous words that can be used in many different ways, with subtle shifts in meaning. Here, we describe an alternative, computationally derived measure of ambiguity based on the proposal that the meanings of words vary continuously as a function of their contexts. On this view, words that appear in a wide range of contexts on diverse topics are more variable in meaning than those that appear in a restricted set of similar contexts. To quantify this variation, we performed latent semantic analysis on a large text corpus to estimate the semantic similarities of different linguistic contexts. From these estimates, we calculated the degree to which the different contexts associated with a given word vary in their meanings. We term this quantity a word's semantic diversity (SemD). We suggest that this approach provides an objective way of quantifying the subtle, context-dependent variations in word meaning that are often present in language. We demonstrate that SemD is correlated with other measures of ambiguity and contextual variability, as well as with frequency and imageability. We also show that SemD is a strong predictor of performance in semantic judgments in healthy individuals and in patients with semantic deficits, accounting for unique variance beyond that of other predictors. SemD values for over 30,000 English words are provided as supplementary materials. © 2012 Psychonomic Society, Inc
    corecore