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Importance of non-affine viscoelastic response in dis-

ordered fibre networks

L. G. Rizzi,a,b S. Auer,b and D. A. Headc

Disordered fibre networks are ubiquitous in nature and have a wide range of industrial applica-

tions as novel biomaterials. Predicting their viscoelastic response is straightforward for affine

deformations that are uniform over all length scales, but when affinity fails, as has been observed

experimentally, modelling becomes challenging. Here we present a numerical methodology, re-

lated to an existing framework for amorphous packings, to predict the steady-state viscoelastic

spectra and degree of affinity for disordered fibre networks driven at arbitrary frequencies. Apply-

ing this method to a peptide gel model reveals a monotonic increase of the shear modulus as the

soft, non-affine normal modes are successively suppressed as the driving frequency increases.

In addition to being dominated by fibril bending, these low frequency network modes are also

shown to be delocalised. The presented methodology provides insights into the importance of

non-affinity in the viscoelastic response of peptide gels, and is easily extendible to all types of

fibre networks.

Introduction

Fibrous assemblies represent an important class of materials with

many industrial applications including scaffolds for tissue engi-

neering1 and enamel remineralization2, nonwoven fabrics for

medical textiles and industrial filters3, carbon nanotube compos-

ites4, paper and felt5. Nature employs protein fibre networks

in the multi-functional cellular cytoskeleton6,7. The mechanical

stiffness of fibre networks is often central to their function, and

although static properties come under most scrutiny, they often

exist in dynamic environments subject to temporally-varying me-

chanical loads, including the cytoskeleton of motile cells7, and

scaffolds for tendon and ligament regeneration, where habitual

loading propagating through the network influences the viability

of embedded stem cells8–10. Understanding the dynamical net-

work response is essential to design novel materials with proper-

ties suited for such situations.

A key modelling challenge is to determine the degree to which

the deformation is affine11–18. For an affine deformation, the

microscopic deformation field defined at the lengths of individ-

ual fibres is simply a scaled version of the macroscopic strain,

as schematically demonstrated in Fig. 1. In this case, extrapo-

lating the macroscopic response from a putative microstructure is

straightforward, and a range of thermal and athermal affine mod-

els for fibre networks have been developed19,20. However, for
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disordered materials13–15, as well as non-centrosymmetric crys-

tals16, such deformations are not observed as they would result in

non-vanishing net forces on network nodes, violating mechanical

equilibrium. Nodes must therefore move to non-affine positions

to satisfy force balance, lowering the elastic energy and, since

elastic moduli are proportional to energy changes21,22, softening

the material. In such cases, which have been observed experi-

mentally for actin23–25 and collagen26 networks, the deformation

field becomes coupled to the microstructure, adding an additional

layer of complexity. Scaling analysis12 and effective medium ap-

proximations17 have been developed for semi-flexible polymer

networks, and a general analytical framework for non-affine de-

formations has been developed14–16,21 but not yet extended to

fibre networks. In lieu of an exact analytical theory, a common

approach has been to numerically determine the microscopic de-

formation field for explicit network realisations18. This has thus

far been limited to the elastic plateau amenable to energy mini-

mization algorithms18,27–29, or computationally–intensive parti-

cle methods that only access short times30,31. Without a more

general understanding of fibre networks dynamics, we lack the

capability to predict potentially large changes in viscoelastic prop-

erties over experimentally relevant time scales.

Here we present a methodology which allows the numeri-

cal calculation of the viscoelastic spectra for any type of disor-

dered fibre network driven at arbitrary oscillation frequencies.

Our approach shares features with an analytical framework de-

veloped for the non-affine deformations of packings and simple

networks13,15, adapting it to include triplet interactions for fi-
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Fig. 1 Schematic representation of affine (light discs and arrows) and

non-affine (dark discs and arrows) deformations on a fibre network

under shear. On the background is a fibre network configuration

extracted from our simulations. Fibres are formed from the

self-assemble of anisotropically interacting peptide monomers 32,33.

bre bending, although in our treatment we make no reference to

the affine deformation field except when normalising our results,

and employ numerical methods to generate solutions. As in these

previous works, the method is based on normal modes, which en-

sures linear response, and since no thermal effects or crosslink

dynamics are included by construction, all measured variation in

affinity and viscoelasticity can be ascribed with certainty to net-

work properties. We demonstrate the efficacy of this method by

applying it to a model of peptide gels, and reveal a rich inter-

play between viscoelasticity, affinity, and mode localisation that

derives from the successive suppression of network modes as the

driving frequency increases.

Method

Our considerations apply to crosslinked networks of slender elas-

tic fibres immersed in a Newtonian fluid with viscosity ν . To sim-

plify the network-fluid interaction, all fibre mass is regarded as

being concentrated on network nodes in the form of a spheri-

cal bead with radius a and corresponding Stokes’ drag coefficient

6πaν . Hydrodynamic interactions between beads are neglected.

Taking the overdamped regime relevant to the intended applica-

tions, the force balance equation in terms of the node/bead dis-

placement ~u is

6πaν∂t~u+H~u = ~f cos(ωt) , (1)

where H is the dynamical (Hessian) matrix with components

Hi j ≡ ∂i∂ jEelastic in terms of the total elastic energy Eelastic({~u}) of

a given configuration, and ~f is the vector amplitude of the force

applied to this node. The left hand side of (1) couples fluid fric-

tion to internal forces generated by network elasticity, and these

are balanced with the external force on the right hand side, here

assumed to be oscillatory. A stress-controlled shear protocol is

assumed where the force is applied only to boundary nodes, so

that ~f = 0 for the internal nodes, ~f = +~f0 on upper boundary

nodes, and ~f = −~f0 on lower boundary nodes, where all ~f0 on

each surface sum to give the required stress. All node displace-

ments are indexed into a single vector ~U , which could be ordered

e.g. (u1,x,u1,y,u2,x,u2,y, . . .) for two dimensional (2D) networks.

All node displacements can then be written in terms of the eigen-

vectors~hα of the Hessian H as

~U = ∑
α

ūα
~hα , (2)

where the sum is over all modes α.

Following a similar protocol to that developed for amorphous

solids13, we substitute the expansion above into (1) to obtain

exact expressions for the in-phase ū′α and out-of-phase ū′′α compo-

nents of the coefficients ūα in steady state,

ū′α (t) =
1

1+(ωτα )2

f̄α

λα
cos(ωt) (3)

and

ū′′α (t) =
ωτα

1+(ωτα )2

f̄α

λα
sin(ωt) , (4)

where f̄α are the coefficients of the expansion ∑α f̄α~hi,α for the

external force on all nodes, and λα is the eigenvalue of mode α.

The eigenvalues λα are usually related to frequencies, but be-

cause we consider the overdamped limit they are instead related

to relaxation times τsim
α = 6πaν/λα . Note that floppy modes cor-

respond to null eigenvalues and undefined relaxation times. We

identify these using singular value decomposition34, and assign

to each the coefficients ū′α = 0 and ū′′α = ω−1( f̄α/6πaν)sin(ωt)

corresponding to H~u =~0 in (1). By considering the amplitudes

in (3) and (4), one can use (2) to relate the displacements ~ui to

the local strain in the i-th bead as γi = ui,x/(ui,y −YM), where YM

is the middle height line of the system (see Fig. 1). In order to

avoid numerical instabilities due to those beads near the middle

line (i.e. ui,y ≈ YM), we take the mean value averaged only over

beads placed at the upper and bottom boundaries. Finally, the in-

phase (γ ′) and out-of-phase (γ ′′) strains are used to compute the

shear moduli of the fibre network, i.e. both the storage modulus

G′(ω) = 〈 f0/γ ′〉 and the loss modulus G′′(ω) = 〈 f0/γ ′′〉.

In practice, the numerical determination of the viscoelastic

spectrum of a disordered fibre network requires (i) the construc-

tion of the Hessian matrix H for an explicit network realisation

and a chosen model for single-fibril elasticity, and the determina-

tion of its eigenvectors~hα and eigenvalues λα , (ii) the determina-

tion of the coefficients f̄α in the expansion of the external force

on the network nodes in terms of the eigenvectors, (iii) knowl-

edge of τα , λα and f̄α allows determination of the in-phase and

out-phase response ū′α and ū′′α from (3) and (4), which in turn

allows determination of the actual displacement ~U from (2) as a

function of the frequency ω, (iv) from ~U it is straightforward to

determine the local strains γ ′, γ ′′ and the shear moduli G′, G′′ of

the fibre network from the above formulae.

Peptide gels

Our test system is a recently developed 2D model for peptide gels,

where peptide monomers are explicitly considered in the forma-

tion of the fibre network33. In this model, peptide monomers

are initially placed at random on a triangular lattice, and trans-

lated and rotated using a Monte Carlo algorithm to evolve the

network structure as a function of time. The interactions be-
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tween peptide monomers are characterized by their anisotropy

ratio ξ = ψ/ψh > 1, where ψ and ψh are the strengths of strong

directional hydrogen bonds and weak isotropic hydrophobicity-

mediated bonds32, respectively. The anisotropy in the inter-

actions between peptide monomers enables their assembly into

crosslinked networks that exhibit a universal time-dependent be-

haviour in their microstructural geometry (i.e. fibre thickness, fi-

bre length, crosslink separation). Furthermore, the same time-

scaling function was found to collapse the plateau value of the

corresponding shear modulus and crosslink connectivities33 .

Elastic network model

To determine the elasticity of the peptide network at specified

time points, we generalise a lattice-based approach35 to permit

variations in fibre thickness33. In our model, the change in the

total elastic energy Eelastic with respect to the unstrained network

is defined as the sum of the changes in stretching and bending

energies of the fibres. The total stretching energy is given by

Estretching =
1

2
∑

ν<µ

kνµ (δ lνµ )
2 , (5)

where the sum is over connected crosslinks ν and µ, kνµ is the

spring constant of the fibril segment connecting them, and δ lνµ

is the extension of the segment due to the displacement vectors

related to each crosslink, i.e. δ lνµ =~uνµ · l̂νµ with ~uνµ =~uµ −~uν

and l̂νµ =~lνµ/|~lνµ |. Similarly, the total bending energy is defined

as

Ebending =
1

2
∑

νβ µ

κνβ µ

(

δθνβ µ

)2

l̄νβ µ

, (6)

where the sum is over adjacent crosslinks along the same fibre,

κνβ µ is the bending rigidity of the corresponding fibre, l̄νβ µ =

(lνβ + lβ µ )/2 is the mean crosslink length, and δθνβ µ denotes

the change in angle between the two consecutive fibril segments

νβ and β µ. The initial angle is generally not zero but to avoid

the presence of pre-stresses and to set elastic energy of the un-

strained networks to zero, we set δθνβ µ = 0 for all fibres. The

coupling constants kνµ and κνβ µ are estimated by considering

the fibres as slender, defect-free elastic bodies with a uniform cir-

cular cross-section22. Hence, the spring constant and bending

rigidity are written, respectively, as kνµ = gνµ πR2
νµ E f /lνµ and

κνβ µ = gνβ gβ µ πR4
νβ E f /4, where Rνµ is the radius of the cross-

section of the fibre, E f its Young’s modulus, and gνµ = 1 for

connected crosslinks or 0 otherwise. The radius Rνµ is taken

to be half of the fibre thickness iνµ of the fibril segment link-

ing the crosslink pair ν and µ. Both constants are normalized by

E f , giving k′νµ = kνµ/E f = gνµ πi2νµ/4 lνµ and κ ′
νβ µ = κνβ µ/E f =

gνβ gβ µ πi4νβ /64. Note that we use linerized expressions for the

elastic energies, so the elements of the Hessian matrix do not de-

pend on the displacements of the crosslinks ~u, but only on the

network’s topology and the morphology of the fibres.

The resulting Hessian matrix H defined via Estretching+Ebending =
1
2~u ·H~u is sparse, symmetric and positive definite, although the

sparsity pattern (i.e. the locations of all non-zero elements) dif-

fers from that of central force networks. This is due to the intro-

duction of the triplet interactions encoded in Ebending, which gives

rise to non-zero couplings for nearest and next-nearest nodes on

the same fibre. By contrast, the pair interactions of Estretching only

generate couplings for nearest neighbours, as per central force

networks. If we denote the mean number of nodes connected to

any given node by z, then ∼ z non-zero elements in each row of

H relate to both Estretching and Ebending, and a similar number of

additional elements relate only to Ebending, with the exact pattern

deriving from the network connectivity. Note that the affine con-

tribution to the storage modulus G′ at zero frequency, which is

proportional to z, is reduced by non-affine deformations13,15, re-

sulting in a rigidity transition with G′(ω = 0) = 0 at finite z, but

all of our results lie above this transition.

Results

Unless otherwise stated, all results presented below are for net-

works generated from monomers with anisotropy ξ = 10 and a

coverage (i.e. the mean lattice occupation, proportional to the

network density) of 0.525, obtained at two different simulation

times t measured in Monte Carlo steps (MCS). All measurements

correspond to averages over 25 independent simulations. Results

are reported in experimental units assuming a Young’s modulus

for the fibrous material to be E f = 109 Pa, all beads having the

same radius a = 10 nm, and the fluid viscosity ν = 0.001 Pa s is

that of water at 20oC. Simulation relaxation times and frequen-

cies are converted to experimental units as per τ = τsim/E f and

ω = ωsimE f , with units of s and s−1 respectively. In addition, the

viscoelastic spectra G′(ω) and G′′(ω) have been normalised to the

frequency-independent affine shear modulus Gaff corresponding

to the storage modulus at zero frequency.

Figure 2(a) demonstrates that the storage modulus G′ presents

a plateau regime for low frequencies, and then smoothly increases

above some threshold frequency here denoted ω∗. This behaviour

can be rationalised in terms of the frequency cut-offs, i.e. the

1+ (ωτα )
2 factors in the denominators of (3) and (4), leading

to a reduction in the amplitude of mode α as ω increases beyond

this mode’s natural relaxation time τα . Without this mode’s con-

tribution, the strain is reduced, so the system stiffens. At high

frequencies, the increase of the storage modulus can be described

by a power-law G′ ∼ωδ with δ in the range 0.5 to 0.9 for all values

of ξ and t assayed. This range includes the value δ ∼ 0.60 mea-

sured for fibrillar networks using passive microrheology36. An

exponent of 0.5 due to crosslink unbinding dynamics has been

observed in experiments37 and confirmed theoretically38, but as

our model includes no such relaxation mechanism this cannot be

the origin of our δ . Similarly the 3/4 exponent for the wormlike

chain model39 requires thermal undulations that are not present

in our athermal, elastic fibres. We note that our G′(ω) is quali-

tatively similar to that of the standard linear solid model40, but

our G′′(ω) exhibits a different high-frequency limit, and further

we have a broad distribution of relaxation times rather than just

one resulting in an inability to fit our spectra to the predictions of

this model.

At the low frequencies, our networks deform in a highly non-

affine manner as evident in the low values of G′/Gaff. This non-
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Fig. 2 Results obtained for a fibre network with 34408 peptides (monomer density 0.525) and anisotropic ratio ξ = 10 at two simulation times

t = 46 MCs and t = 49 MCs. (a) normalized storage modulus G′(ω)/Gaff (filled symbols) and loss modulus G′′(ω)/Gaff (open symbols), where

Gaff = G′(ω = 0) is the zero-frequency shear modulus. (b) non-affinity parameter Γ(ω). (c) distribution of relaxation times τ, where κ = 0 denotes

distributions obtained neglecting the bending terms of the elastic energy. (d) Inverse of the participation ratio P−1(τ). Error bars are computed as the

standard deviation from 25 independent simulations.

affine response is independently confirmed by simultaneously

plotting the non-affinity parameter Γ(ω) = 〈u2
y/(u

2
x + u2

y)〉, which

is zero for affine deformations. As seen in Fig. 2(b), Γ increases

with decreasing frequency. This trend has been observed in amor-

phous central force systems, and is expected to hold for disor-

dered solids in general13,16. Although the relative change in Γ is

smaller than that of G′/Gaff, there is no simple relationship be-

tween these two measures, and furthermore the reduced nature

of our model (i.e. lack of thermal fluctuations, crosslink dynamics

and non-linearities) means the observed variation in G′/Gaff can

only be due to non-affine network deformations. Fig. 2(a) also

demonstrates our networks soften with age, which has also been

observed for crosslinked actin41 and can be related here to the

increase in non-affinity, itself due to the reduced network connec-

tivity as shown elsewhere33.

Our 2D results can be compared to 3D experiments by scal-

ing according to the affine predictions for each dimension,

i.e. G3D/G2D = 8/(15lc), with the inter-crosslink length lc ∼

10 nm33. This yields values for the storage modulus G′ at the

plateau regime equal to (700± 100) Pa for ω < ω∗ ≈ 240 rad.s−1

and (400± 100) Pa for ω < ω∗ ≈ 90 rad.s−1 at t = 46 MCs and

t = 49 MCs, respectively. These values are comparable to mea-

surements for peptide gels such as amyloid tapes42–44 and spider

silk45,46. In addition, to confirm that scattering effects can be

ignored, we relate frequencies to wavelengths λ by dimensional

analysis, λ ∼ ω−1
√

G′/ρ, with ρ the mass density of the network.

Assuming the fibril material to have a density ρ f ∼ ρE f /Gaff sim-

ilar to that of water, the plateau value G′/Gaff ∼ 10−4 in Fig. 2(a)

corresponds to a wavelength λ ∼ 10/ω (in metres if ω is in s−1),

which is much larger than the micro-structural length scales of

the smallest structures in the system.

In Fig. 2(c) we show the distribution of relaxation times τ,

which confirms that the broad range over which G′ decreases is

related to a broad range of τ following a bimodal distribution.

Previous work at zero frequency identified the fast and slow re-

laxation peaks with fibre stretching and bending modes, respec-

tively47, and we can confirm this holds for finite frequency by

setting the fibre bending modulus κ to zero in Eelastic, which re-

moves the slow relaxation modes without significantly altering

the fast ones as shown in the figure. In addition, the fast stretch-

ing modes move to shorter relaxation times as the simulation

time t increases, in contrast to the slow bending modes which

remain fixed, lending insight into the mechanism underlying the

observed softening with age. The slow bending modes are also

delocalised, in contrast to the localised fast stretching modes, as

shown in Fig. 2(d) where is displayed the inverse participation ra-
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Fig. 3 Time dependence of (a) the elastic modulus G0 = G′(0) scaled to

the affine prediction, (b) the threshold frequency ω∗, (c) the

zero-frequency non-affinity Γ0, and (d) the modal relaxation time τm.

The same quantities are plotted against the unscaled time t (left panels,

open symbols) and the rescales time tξ (right panels, closed symbols).

tio P−1(τ)=∑τ |~hτ .~hτ |
2/|∑τ ′~hτ ′ .~hτ ′ |2, which is high for delocalised

and low for localised modes47,48. This trend is consistent with in-

tuitive assertions made in recent vimentin experiments49.

The picture just described holds for other values of the

anisotropy parameter ξ and network formation time t consid-

ered. Shown in Fig. 3 are the trends as ξ and t are varied for

the zero-frequency elastic modulus G0 ≡ G′(ω = 0)/Gaff, the zero-

frequency non-affinity Γ0 ≡ Γ(ω = 0), the threshold frequency ω∗

and the modal relaxation time τm. In addition to the unscaled

behaviour given as a function of simulation time t (open symbols

and left panels), we also plot the same quantities against the ξ -

dependent rescaled time tξ = te−(ξ−ξ0) (filled symbols and right

panels) which generates data collapse at zero frequency33. As

illustrated in Figs. 3(a) and (b), G0 and ω∗ exhibit a similar non-

monotonic behaviour, while the data for Γ0 in Fig. 3(c) demon-

strates an increase in non-affinity with time. Figure 3(d) confirms

that the trend mentioned above, i.e. that τm shifts to shorter re-

Fig. 4 Power-law relation between the normalized plateau modulus G0

and the threshold frequency ω∗ for different anisotropy ratios ξ .

laxation times with network age, is general. We also observe a

power-law behaviour G0 ∼ (ω∗)2/3 which appears to be indepen-

dent of ξ , as shown in Fig. 4, but currently have no explanation

for this apparently robust phenomenon. Even on an empirical

level, the relationship between these two quantities may find ap-

plication in cell mechanics50 and food science51, where the mea-

surement of one quantity could be used to infer the other. Finally,

we can infer from the data collapse under the same rescaled time

as33 that these dynamic quantities correlate to microstructural

geometric quantities (fibre length and thicknesses, crosslink sep-

aration), suggesting the ultimate origin of the observed frequency

dependence of our fibre networks is geometric.

Conclusions

In summary, we have introduced an efficient numerical scheme

to extract the linear finite-frequency viscoelastic response of fi-

bre networks, and applied it to model peptide gels to observe a

power-law increase of the storage modulus G′ with frequency ω.

Our method precludes the possibility that this stiffening is related

to dynamic crosslink unbinding37,38 or frequency-dependent sin-

gle fibre response39, but instead demonstrates it is due to an un-

derlying decrease in non-affinity as shown in Fig. 2. This predic-

tion is in principle experimentally testable24. That the transition

from affine to non-affine response is gradual is consistent with

Brownian dynamics31 and elastic spring networks52, although

our results include fibre bending and are unambiguously steady

state. The loss modulus G′′(ω) never strongly deviated from the

purely viscous response νω, in contrast to the clearly sublinear

variation observed in many fibrous materials19,53–55. This devi-

ation may be due hydrodynamic interactions, which could be in-

corporated into this framework by including interaction terms via

Oseen tensors56 in (1) to give a dense matrix equation. Finally,

we note that even though we have applied this methodology to

peptide gels in 2D, we expect our method and core findings to

be applicable to fibre networks in general, including in three di-

mensions. Our methodology also allows a way to approach the
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complex and largely unexplored problem of hydrodynamic inter-

actions in fibre networks.
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