118 research outputs found

    Reducing occurrence of Giardia duodenalis in children living in semiarid regions: impact of a large scale rainwater harvesting initiative.

    Get PDF
    BACKGROUND: In Brazil, about two million people living in rural semiarid regions were benefited with the construction of rainwater cement cisterns, as an initiative from the program "One Million Cisterns" (P1MC). Nevertheless, few epidemiological studies have been conducted to assess health risks or protection effects associated with consumption of this water source. The aim of this study was to evaluate whether access to rainwater harvesting cisterns is associated with the decrease in the occurrence of Giardia duodenalis infections in children, compared to other children living in households supplied by other water sources. METHODOLOGY/PRINCIPAL FINDINGS: A quasi-experimental study with two concurrent cohorts was developed in two rural municipalities of the semiarid region of Brazil. A sample of 664 children, aged between 4 months and 5 years old, was followed up, of which 332 had access to rainwater cisterns (cistern group) and 332 did not, having water supplied from alternative sources (comparison group). In a period of approximately one year (2010) intestinal parasites were investigated in feces three times. The prevalence of G. duodenalis in children from the cistern group ranged from 4.8 to 10.5%, while the prevalence in the comparison group ranged from 7.6 to 16.7%. Multivariate analysis (GEE) showed a higher risk of G. duodenalis infection in children who did not have access to rainwater cisterns, when compared to children who did (OR 1.72; 95% CI 1.14-2.59). The other variables associated with G. duodenalis infection were: number of rooms per house (OR 0.89; 95% CI 0.80-0.99); family income (OR0.48; 95% CI 0.26-0.88); birth order (OR 1.72; 95% CI 1.17-2.51); preterm children (OR 1.70; 95% CI 1.19-2.43); and improper hand hygiene prior to food preparation (OR 4.78; 95% CI 1.95-11.76). CONCLUSIONS/SIGNIFICANCE: Ownership of a rainwater cistern is associated with a lower prevalence of G. duodenalis infection in children after adjustment for environmental and family-related factors. Nevertheless, the study suggests the necessity to complement physical interventions with actions related to personal and domestic hygiene to enable further reductions in parasite infections affecting mainly the underprivileged populations

    Human and Non-Human Primate Genomes Share Hotspots of Positive Selection

    Get PDF
    Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution

    Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    Get PDF
    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean F-ST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone

    Pervasive Hitchhiking at Coding and Regulatory Sites in Humans

    Get PDF
    Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald–Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites—either recurrent selective sweeps or background selection—on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism

    Quantitative Genetics, Pleiotropy, and Morphological Integration in the Dentition of Papio hamadryas

    Get PDF
    Variation in the mammalian dentition is highly informative of adaptations and evolutionary relationships, and consequently has been the focus of considerable research. Much of the current research exploring the genetic underpinnings of dental variation can trace its roots to Olson and Miller's 1958 book Morphological Integration. These authors explored patterns of correlation in the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of genetic information through which to view the patterns of correlation. Following in the spirit of Olson and Miller's research, we present a quantitative genetic analysis of dental variation in a pedigreed population of baboons. We identify patterns of genetic correlations that provide insight to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence of at least three modules: an incisor module that is genetically independent of the post-canine dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module. We then compare this matrix of genetic correlations to matrices of phenotypic correlations between the same measurements made on museum specimens of another baboon subspecies and the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the matrices from these three primate taxa. From these observations we infer similarity in modularity and hypothesize a common pattern of genetic integration across the dental arcade in the Cercopithecoidea

    Patterns of Positive Selection and Neutral Evolution in the Protein-Coding Genes of Tetraodon and Takifugu

    Get PDF
    Recent genome-wide analyses have revealed patterns of positive selection acting on protein-coding genes in humans and mammals. To assess whether the conclusions drawn from these analyses are valid for other vertebrates and to identify mammalian specificities, I have investigated the selective pressure acting on protein-coding genes of the puffer fishes Tetraodon and Takifugu. My results indicate that the strength of purifying selection in puffer fishes is similar to previous reports for murids but stronger in hominids, which have a smaller population size. Gene ontology analyses show that more than half of the biological processes targeted by positive selection in mammals are also targeted in puffer fishes, highlighting general patterns for vertebrates. Biological processes enriched with positively selected genes that are shared between mammals and fishes include immune and defense responses, signal transduction, regulation of transcription and several of their descendent terms. Mammalian-specific processes displaying an excess of positively selected genes are related to sensory perception and neurological processes. The comparative analyses also revealed that, for both mammals and fishes, genes encoding extracellular proteins are preferentially targeted by positive selection, indicating that adaptive evolution occurs more often in the extra-cellular environment rather than inside the cell. Moreover, I present here the first genome-wide characterization of neutrally-evolving regions of protein-coding genes. This analysis revealed an unexpectedly high proportion of genes containing both positively selected motifs and neutrally-evolving regions, uncovering a strong link between neutral evolution and positive selection. I speculate that neutrally-evolving regions are a major source of novelties screened by natural selection
    corecore