2,626 research outputs found

    A numerical study of the spectrum and eigenfunctions on a tubular arc

    Full text link
    The Hamiltonian for a particle constrained to move on the surface of a curved nanotube is derived using the methods of differential forms. A two-dimensional Gram-Schmidt orthonormalization procedure is employed to calculate basis functions for determining the eigenvalues and eigenstates of a tubular arc (a nanotube in the shape of a hyperbolic cosine) with several hundred scattering centers. The curvature of the tube is shown to induce bound states that are dependent on the curvature parameters and bend location of the tube.Comment: 14 pages, 5 tables, 6 figure

    Electron wave functions on T2T^2 in a static magnetic field of arbitrary direction

    Full text link
    A basis set expansion is performed to find the eigenvalues and wave functions for an electron on a toroidal surface T2T^2 subject to a constant magnetic field in an arbitrary direction. The evolution of several low-lying states as a function of field strength and field orientation is reported, and a procedure to extend the results to include two-body Coulomb matrix elements on T2T^2 is presented.Comment: 18 pages, 6 figure

    Curvature effects on surface electron states in ballistic nanostructures

    Full text link
    The curvature effect on the electronic states of a deformed cylindrical conducting surface of variable diameter is theoretically investigated. The quantum confinement of electrons normal to the curved surface results in an effective potential energy that affects the electronic structures of the system at low energies. This suggests the possibility that ballistic transport of electrons in low-dimensional nanostructures can be controlled by inducing a local geometric deformation.Comment: 11 pages, 3 figure

    Progressive failure modelling and ductility demand of steel beam-to-column connections in fire

    Get PDF
    A numerical procedure has been developed to model the sequences of failure which can occur within steel beam-to-column connections under fire conditions. In this procedure two recent developments, a static-dynamic solution process and a general component-based connection element, have been combined within the software Vulcan in order to track the sequence of local failures of the connections which lead to structural progressive collapse in fire. In particular the procedure developed can be used to investigate the structural behaviour in fire, particularly the ductility and fracture of different parts of the steel-to-steel connections, and the influence of the connections on the progressive collapse resistance of steel frames in fire. In the component-based connection model, a connection is represented as an assembly of "bolt-rows" composed of components representing different zones of mechanical behaviour whose stiffness, strength, ductility and fracture under changing temperatures can be adequately represented for global modelling. The potential numerical instabilities induced by fractures of individual connection's components can be overcome by the use of alternate static and dynamic analyses. The transfer of data between the static and dynamic analyses allows a seamless alternation between these two procedures to take place. Accuracy and stability of the calculations can be ensured in the dynamic phase, provided that the time steps are set sufficiently small. This procedure has the capacity of tracking the sequence of local failures (fractures of connection components, detachment and motion of disengaging beams, etc.) which lead to final collapse. Following an illustrative case study of a two-bay by two-storey frame, the effect of ductility of connections on the collapse resistance of steel frames in fire is demonstrated in two case studies of a generic multi-storey frame. It is shown that the analytical process is an effective tool in tackling the numerical problems associated with the complex structural interactions and discontinuous failures which can affect a steel or composite frame in fire, potentially leading to progressive collapse. It can be seen that both tensile and compressive ductility in the connections make a contribution to the fire resistance of the beams. Preventing the detachment of steel beams in fire can be achieved by inducing greater ductility into their connections. Combined with appropriate component-based connection models, this procedure can be adopted in performance-based fire-resistant design to assess the ductility requirements of steel connections

    An all-electric single-molecule hybridisation detector for short DNA fragments

    Get PDF
    In combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipettes, we demonstrate an all-electric, label-free hybridisation sensor for short DNA sequences (< 100 nt). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system a 88-mer target from the RV1910c gene in Mycobacterium tuberculosis that is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive pulse sensing in nanopipettes is capable of identifying rather subtle structural differences, such as the hybridisation state of the probes, in a statistically robust manner. With significant potential towards multiplexing and high-throughput analysis, our study points towards a new, single-molecule DNA assay technology that is fast, easy to use and compatible with point of care environments

    The Intention-Outcome Asymmetry Effect: How Incongruent Intentions and Outcomes Influence Judgments of Responsibility and Causality

    Get PDF
    Knowledge of intention and outcome is integral to making judgments of responsibility, blame, and causality. Yet, little is known about the effect of conflicting intentions and outcomes on these judgments. In a series of four experiments, we combine good and bad intentions with positive and negative outcomes, presenting these through everyday moral scenarios. Our results demonstrate an asymmetry in responsibility, causality, and blame judgments for the two incongruent conditions: well-intentioned agents are regarded more morally and causally responsible for negative outcomes than ill-intentioned agents are held for positive outcomes. This novel effect of an intention-outcome asymmetry identifies an unexplored aspect of moral judgment and is partially explained by extra inferences that participants make about the actions of the moral agent

    Spontaneous breaking of superconformal invariance in (2+1)D supersymmetric Chern-Simons-matter theories in the large N limit

    Full text link
    In this work it is studied the spontaneous breaking of superconformal and gauge invariances in the Abelian N=1,2 three-dimensional supersymmetric Chern-Simons-matter theories in a large N limit. It is computed the K\"ahlerian effective superpotential at subleading order and shown that the Coleman-Weinberg mechanism is the responsible for the dynamical generation of a mass scale in the N=1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. In particular, the Coleman-Weinberg mechanism fails when we lift the N=1 to N=2 Supersymmetric Chern-Simons-Matter model, like what happens in a perturbative expansion in the coupling constants.Comment: 10 pages, 2 figures, PLB versio

    The walkthrough method : an approach to the study of apps

    Get PDF
    Software applications (apps) are now prevalent in the digital media environment. They are the site of significant sociocultural and economic transformations across many domains, from health and relationships to entertainment and everyday finance. As relatively closed technical systems, apps pose new methodological challenges for sociocultural digital media research. This paper describes a method, grounded in a combination of science and technology studies with cultural studies, through which researchers can perform a critical analysis of a given app. The method involves establishing an app’s environment of expected use by identifying and describing its vision, operating model, and modes of governance. It then deploys a walkthrough technique to systematically and forensically step through the various stages of app registration and entry, everyday use, and discontinuation of use. The walkthrough method establishes a foundational corpus of data upon which can be built a more detailed analysis of an app’s intended purpose, embedded cultural meanings, and implied ideal users and uses. The walkthrough also serves as a foundation for further user-centred research that can identify how users resist these arrangements and appropriate app technology for their own purposes

    An analytical approach to modelling shear panels in steel beams at elevated temperatures

    Get PDF
    Shear buckling of beam webs in the vicinity of beam-to-column connections has been observed in many full-scale fire tests. This phenomenon can lead to force redistribution within the adjacent connections, and even influence the performance-based analysis of full-scale structures in fire. However, beam-web shear buckling for Class 1 beams at either ambient or elevated temperatures has not been well studied previously. In this work an analytical model has been created to predict the shear buckling behaviour of Class 1 beams in the vicinity of beam-to-column connections at ambient and elevated temperatures. The model considers the reduction of resistance of the beam after web shear buckling has occurred. It is capable of predicting the shear resistance and transverse drift of the shear panel from its initial loading to final failure. Several 3D finite element models have been created using the ABAQUS software, in order to validate the analytical model over a range of geometries. Comparisons between the theoretical and FE models have shown that the proposed method provides sufficient accuracy to be implemented and used in performance-based global modelling
    • 

    corecore