4 research outputs found

    Sample treatment for tissue proteomics in cancer, toxicology, and forensics

    Get PDF
    Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science. This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies. In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution. With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies. Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest

    Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics

    No full text
    Objectives: The aim of this research was to review the literature on Alzheimer’s disease (AD) with a focus on polyphenolics as antioxidant therapeutics. Design: This review included a search of the literature up to and including September 2019 in PubMed and MEDLINE databases using search terms that included: Alzheimer’s Disease, Aβ peptide, tau, oxidative stress, redox, oxidation, therapeutic, antioxidant, natural therapy, polyphenol. Any review articles, case studies, research reports and articles in English were identified and subsequently interrogated. Citations within relevant articles were also examined for consideration in this review. Results: Alzheimer’s disease is a neurodegenerative disorder that is clinically characterised by the progressive deterioration of cognitive functions and drastic changes in behaviour and personality. Due to the significant presence of oxidative damage associated with abnormal Aβ accumulation and neurofibrillary tangle deposition in AD patients’ brains, antioxidant drug therapy has been investigated as potential AD treatment. In particular, naturally occurring compounds, such as plant polyphenols, have been suggested to have potential neuroprotective effects against AD due to their diverse array of physiological actions, which includes potent antioxidant effects. Conclusions: The impact of oxidative stress and various mechanisms of pathogenesis in AD pathophysiology was demonstrated along with the therapeutic potential of emergent antioxidant drugs to address such mechanism of oxidation

    Natural product-derived phytochemicals as potential agents against coronaviruses: A review

    No full text
    Coronaviruses are responsible for a growing economic, social and mortality burden, as the causative agent of diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), avian infectious bronchitis virus (IBV) and COVID-19. However, there is a lack of effective antiviral agents for many coronavirus strains. Naturally existing compounds provide a wealth of chemical diversity, including antiviral activity, and thus may have utility as therapeutic agents against coronaviral infections. The PubMed database was searched for papers including the keywords coronavirus, SARS or MERS, as well as traditional medicine, herbal, remedy or plants, with 55 primary research articles identified. The overwhelming majority of publications focussed on polar compounds. Compounds that show promise for the inhibition of coronavirus in humans include scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins such as griffithsin. Other compounds such as lycorine may be suitable if a therapeutic level of antiviral activity can be achieved without exceeding toxic plasma concentrations. It was noted that the most promising small molecules identified as coronavirus inhibitors contained a conjugated fused ring structure with the majority being classified as being polyphenols. © 2020 Elsevier B.V

    Cutaneous innervation in impaired diabetic wound healing

    No full text
    corecore