78 research outputs found
Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot
We have used an electromigration technique to fabricate a
single-molecule transistor (SMT). Besides describing our electromigration
procedure, we focus and present an experimental study of a single molecule
quantum dot containing an even number of electrons, revealing, for two
different samples, a clear out-of-equilibrium Kondo effect. Low temperature
magneto-transport studies are provided, which demonstrates a Zeeman splitting
of the finite bias anomaly.Comment: 6 pages, 4 figure
Frustrated two-dimensional Josephson junction array near incommensurability
To study the properties of frustrated two-dimensional Josephson junction
arrays near incommensurability, we examine the current-voltage characteristics
of a square proximity-coupled Josephson junction array at a sequence of
frustrations f=3/8, 8/21, 0.382 , 2/5, and 5/12.
Detailed scaling analyses of the current-voltage characteristics reveal
approximately universal scaling behaviors for f=3/8, 8/21, 0.382, and 2/5. The
approximately universal scaling behaviors and high superconducting transition
temperatures indicate that both the nature of the superconducting transition
and the vortex configuration near the transition at the high-order rational
frustrations f=3/8, 8/21, and 0.382 are similar to those at the nearby simple
frustration f=2/5. This finding suggests that the behaviors of Josephson
junction arrays in the wide range of frustrations might be understood from
those of a few simple rational frustrations.Comment: RevTex4, 4 pages, 4 eps figures, to appear in Phys. Rev.
Scaling determination of the nonlinear I-V characteristics for 2D superconducting networks
It is shown from computer simulations that the current-voltage (-)
characteristics for the two-dimensional XY model with resistively-shunted
Josephson junction dynamics and Monte Carlo dynamics obeys a finite-size
scaling form from which the nonlinear - exponent can be determined to
good precision. This determination supports the conclusion , where
is the dynamic critical exponent. The results are discussed in the light of the
contrary conclusion reached by Tang and Chen [Phys. Rev. B {\bf 67}, 024508
(2003)] and the possibility of a breakdown of scaling suggested by Bormann
[Phys. Rev. Lett. {\bf 78}, 4324 (1997)].Comment: 6 pages, to appear in PR
Dynamic Scaling and Two-Dimensional High-Tc Superconductors
There has been ongoing debate over the critical behavior of two-dimensional
superconductors; in particular for high Tc superconductors. The conventional
view is that a Kosterlitz-Thouless-Berezinskii transition occurs as long as
finite size effects do not obscure the transition. However, there have been
recent suggestions that a different transition actually occurs which
incorporates aspects of both the dynamic scaling theory of Fisher, Fisher, and
Huse and the Kosterlitz-Thouless-Berezinskii transition. Of general interest is
that this modified transition apparently has a universal dynamic critical
exponent. Some have countered that this apparent universal behavior is rooted
in a newly proposed finite-size scaling theory; one that also incorporates
scaling and conventional two-dimensional theory. To investigate these issues we
study DC voltage versus current data of a 12 angstrom thick YBCO film. We find
that the newly proposed scaling theories have intrinsic flexibility that is
relevant to the analysis of the experiments. In particular, the data scale
according to the modified transition for arbitrarily defined critical
temperatures between 0 K and 19.5 K, and the temperature range of a successful
scaling collapse is related directly to the sensitivity of the measurement.
This implies that the apparent universal exponent is due to the intrinsic
flexibility rather than some real physical property. To address this intrinsic
flexibility, we propose a criterion which would give conclusive evidence for
phase transitions in two-dimensional superconductors. We conclude by reviewing
results to see if our criterion is satisfied.Comment: 14 page
Vortex dynamics and states of artificially layered superconducting films with correlated defects
Linear resistances and -characteristics have been measured over a wide
range in the parameter space of the mixed phase of multilayered a-TaGe/Ge
films. Three films with varying interlayer coupling and correlated defects
oriented at an angle from the film normal were investigated.
Experimental data were analyzed within vortex glass models and a second order
phase transition from a resistive vortex liquid to a pinned glass phase.
Various vortex phases including changes from three to two dimensional behavior
depending on anisotropy have been identified. Careful analysis of
-characteristics in the glass phases revealed a distinctive and
-dependence of the glass exponent . The vortex dynamics in the
Bose-glass phase does not follow the predicted behavior for excitations of
vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table
Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: effects of replacement of dietary fish oil with vegetable oils
The present study compared the effects of diets formulated with reduced fishmeal (FM) content and either 100% fish oil (FO) or 100% of a vegetable oil (VO) blend in post-smolts of three family groups of Atlantic salmon. Two groups were selected as being either “Lean” or “Fat” based on estimated breeding values (EBV) for flesh adiposity of their parents derived from a breeding programme, while the third group (CAL) was a mix of non-pedigreed commercial families unrelated to the two groups above. The VO blend comprised rapeseed, palm and a new product, Camelina oil in a ratio of 5/3/2, and diets were fed to duplicate pens of each salmon group. After an ongrowing period of 55 weeks, to reach a mean weight of 3kg, the fish from all treatments were switched to a decontaminated FO for a further 24 weeks to follow restoration of long-chain n-3 polyunsaturated fatty acids (LC-PUFA) in the fish previously fed VO. Final weights were significantly affected by family group and there was also an interaction between diet and group with Fat and Lean FO fish being larger than the same fish fed VO. Specific growth rate (SGR) was highest in CAL fish (1.01), feed conversion ratio (FCR) was highest in the Lean fish but there were no significant effects on thermal growth coefficient (TGC). Condition Factor (CF) was lowest in CAL fish while the hepato-somatic index (HSI) was highest in Lean fish and viscero-somatic index (VSI) highest in Fat fish. Flesh and viscera lipid content was affected by both family group and diet with a significant interaction between the two. Flesh lipid in fish fed FO was in the order Fat > CAL > Lean although this order was Fat = Lean > CAL when fed VO. Flesh fatty acid compositions were affected mainly by diet although some minor fatty acids were also influenced by group. Fish fed VO had n-3 LC-PUFA reduced by ~65% compared to fish fed FO but this could be restored by a 16 week FO finishing diet phase. The differences observed in lipid and fatty acid deposition suggested that genetics affected lipid deposition and metabolism and that breeding programmes could select for fish that retained more n-3 LC-PUFA in their flesh, particularly when fed diets low in these fatty acids
Phase Behavior of Type-II Superconductors with Quenched Point Pinning Disorder: A Phenomenological Proposal
A general phenomenology for phase behaviour in the mixed phase of type-II
superconductors with weak point pinning disorder is outlined. We propose that
the ``Bragg glass'' phase generically transforms via two separate thermodynamic
phase transitions into a disordered liquid on increasing the temperature. The
first transition is into a glassy phase, topologically disordered at the
largest length scales; current evidence suggests that it lacks the long-ranged
phase correlations expected of a ``vortex glass''. This phase has a significant
degree of short-ranged translational order, unlike the disordered liquid, but
no quasi-long range order, in contrast to the Bragg glass. This glassy phase,
which we call a ``multi-domain glass'', is confined to a narrow sliver at
intermediate fields, but broadens out both for much larger and much smaller
field values. The multi-domain glass may be a ``hexatic glass''; alternatively,
its glassy properties may originate in the replica symmetry breaking envisaged
in recent theories of the structural glass transition. Estimates for
translational correlation lengths in the multi-domain glass indicate that they
can be far larger than the interline spacing for weak disorder, suggesting a
plausible mechanism by which signals of a two-step transition can be obscured.
Calculations of the Bragg glass-multi-domain glass and the multi-domain
glass-disordered liquid phase boundaries are presented and compared to
experimental data. We argue that these proposals provide a unified picture of
the available experimental data on both high-T and low-T materials,
simulations and current theoretical understanding.Comment: 70 pages, 9 postscript figures, modified title and minor changes in
published versio
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
- …
