95 research outputs found

    Efficient Parallel Statistical Model Checking of Biochemical Networks

    Full text link
    We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture

    Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode

    Get PDF
    We report a measurement of the ttbar production cross section using the CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311 pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events selected with six or more hadronic jets with additional kinematic requirements. At least one of these jets must be identified as a b-quark jet by the reconstruction of a secondary vertex. The cross section is measured to be sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is consistent with the standard model prediction.Comment: By CDF collaboratio

    Measurement of the W+W- Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Dilepton Events

    Get PDF
    We present a measurement of the W+W- production cross section using 184/pb of ppbar collisions at a center-of-mass energy of 1.96 TeV collected with the Collider Detector at Fermilab. Using the dilepton decay channel W+W- -> l+l-vvbar, where the charged leptons can be either electrons or muons, we find 17 candidate events compared to an expected background of 5.0+2.2-0.8 events. The resulting W+W- production cross section measurement of sigma(ppbar -> W+W-) = 14.6 +5.8 -5.1 (stat) +1.8 -3.0 (syst) +-0.9 (lum) pb agrees well with the Standard Model expectation.Comment: 8 pages, 2 figures, 2 tables. To be submitted to Physical Review Letter
    corecore