31 research outputs found

    An experimental and theoretical study of the valence shell photoelectron spectrum of oxalyl chloride

    Get PDF
    Polarization dependent photoelectron spectra encompassing the outer valence orbitals of oxalyl chloride have been recorded in the photon energy range 19 – 91 eV. These have allowed photoelectron anisotropy parameters and branching ratios to be determined. Photoionization partial cross sections and photoelectron anisotropy parameters have been calculated with the Continuum Multiple Scattering – Xα approach. Four of the outer valence orbitals are predicted to possess a significant Cl 3p lone-pair character and have closely grouped binding energies. The photoionization dynamics of these four orbitals are predicted to be strongly affected by the Cooper minimum associated with the Cl 3p orbital in the isolated atom at photon energies around 40 eV. A comparison between the theoretical and measured photoelectron anisotropy parameters has enabled the molecular orbital sequence to be clarified. A doublet has been observed in the region of the photoelectron spectrum where a band due to the 5bu orbital might be anticipated. Our calculations indicate that the 6bu and 5bu orbitals are coupled. This coupling may account for the apparent lack of a pronounced Cooper minimum in the β-parameter associated with the nominal 6bu ionization and for the unexpected appearance of the adjacent photoelectron band, nominally associated with the 5bu orbital. The vertical ionization energy of the outermost 7ag orbital was experimentally determined to be 11.266±0.005 eV

    Effect of electronic angular momentum exchange on photoelectron anisotropy following the two-colour ionization of krypton atoms

    Get PDF
    We present photoelectron energy and angular distributions for resonant two-photon ionization via several low-lying Rydberg states of atomic Kr. The experiments were performed by using synchrotron radiation to pump the Rydberg states and a continuous wave laser to probe them. Photoelectron images, recorded with both linear and circular polarized pump and probe light, were obtained in coincidence with mass-analyzed Kr ions. The photoelectron angular distributions and branching ratios for direct ionization into the Kr+ 2P3/2 and 2P1/2 spin-orbit continua show considerable dependence on the intermediate level, as well as on the polarizations of the pump and probe light. Photoelectron angular distributions were also recorded with several polarization combinations following two-colour excitation of the (2P1/2)5f[5/2]2 autoionizing resonance. These results are compared with the results of recent work on the corresponding autoionizing resonance in atomic Xe

    A study of the valence shell electronic states of s-triazine by photoabsorption spectroscopy and ab initio calculations

    Get PDF
    The absolute photoabsorption cross section of s-triazine has been measured between 4 and 40 eV, and is dominated by bands associated with valence states. Structure due to Rydberg excitations is both weak and irregular. Jahn-Teller interactions affect the vibronic structure observed in the Rydberg absorption bands due to excitation from the 1e00 or 6e0 orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important

    An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    Get PDF
    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20–100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green’s function, the outer valence Green’s function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the experimental spectra. The theoretical work also highlights the formation of satellite states, due to the breakdown of the single particle model of ionization, in the inner valence region

    Competition between decay and dissociation of core-excited OCS studied by X-ray scattering

    Full text link
    We show the first evidence of dissociation during resonant inelastic soft X-ray scattering. Carbon and oxygen K-shell and sulfur L-shell resonant and non-resonant X-ray emission spectra were measured using monochromatic synchrotron radiation for excitation and ionization. After sulfur, L2,3 -> {\pi}*, {\sigma}* excitation, atomic lines are observed in the emission spectra as a consequence of competition between de-excitation and dissociation. In contrast the carbon and oxygen spectra show weaker line shape variations and no atomic lines. The spectra are compared to results from ab initio calculations and the discussion of the dissociation paths is based on calculated potential energy surfaces and atomic transition energies.Comment: 12 pages, 6 pictures, 2 tables, http://link.aps.org/doi/10.1103/PhysRevA.59.428

    Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

    Get PDF
    We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore