176 research outputs found

    Listado anotado de Solanum L. (Solanaceae) en el Peru.

    Get PDF
    The genus Solanum is among the most species-rich genera both of the Peruvian flora and of the tropical Andes in general. The present revised checklist treats 276 species of Solanum L., of which 253 are native, while 23 are introduced and/or cultivated. A total of 74 Solanum species (29% of native species) are endemic to Peru. Additional 58 species occur only in small number of populations outside Peru, and these species are here labelled as near-endemics to highlight the role Peru playes in their future protection. Species diversity is observed to peak between 2500 – 3000 m elevation, but endemic species diversity is highest between 3000 – 3500 m elevation. Cajamarca has the highest number of endemic (29 spp.) and total species (130 spp.), even when considering the effect of area. Centers of endemic species diversity are observed in provinces of Cajamarca (Cajamarca), Huaraz and Carhuaz (Ancash), and Canta and Huarochirí (Lima). Secondary centres of endemism with high concentrations of both endemics and near-endemics are found in San Ignacio and Cutervo (Cajamarca), Santiago de Chuco (La Libertad), Oxapampa (Pasco), and Cusco (Cusco). Current diversity patterns are highly correlated with collection densities, and further collecting is needed across all areas, especially from Arequipa, Ayacucho, Puno, Ancash, Huánuco, Amazonas and Cajamarca, where high levels of species diversity and endemism are indicated but only a few collections of many species are known.Solanum L. es uno de los géneros que posee una alta riqueza de especies dentro de la flora peruana y dentro de los Andes tropicales en general. Presentamos una lista revisada de 276 especies de Solanum para el Perú, de estas 253 son nativas, mientras que 23 son introducidas y/o cultivadas. Un total de 74 especies de Solanum (29% de las especies nativas) son endémicas de Perú. Además 58 especies se encuentran solamente en pequeñas poblaciones fuera del Perú, y estas especies están designadas aquí como casi endémicas para destacar el rol importante del Perú en la futura protección de estas especies. El pico de diversidad de especies es observado entre 2500 – 3000 m de elevación, pero la diversidad de especies endémicas es más alta entre 3000 – 3500 m. Cajamarca tiene el más alto número de especies (130 spp.) y de especies endémicas (29 spp.), incluso si se considera el efecto del área. Centros de diversidad de especies endémicas se localizan en las provincias de Cajamarca (Cajamarca), Huaraz y Carhuaz (Ancash), Canta y Huarochirí (Lima). Centros de endemismos secundarios con una alta concentración tanto de especies endémicas y de casi endémicas se encuentran en San Ignacio y Cutervo (Cajamarca), Santiago de Chuco (La Libertad), Oxapampa (Pasco), y Cusco (Cusco): Los actuales patrones de diversidad están altamente correlacionados con la densidad de colecciones, por lo que es necesario una mayor colecta en todas las regiones, especialmente en Arequipa, Ayacucho, Puno, Ancash, Huánuco, Amazonas y Cajamarca, donde se indican altos niveles de diversidad y endemismo de especies, pero de las cuales existen pocas colecciones

    Growth and Mechanical and Tribological Characterization of Multi-Layer Hard Carbon Films

    Get PDF
    Vacuum-arc deposition is used to deposit multilayer C films by modulating the sample bias during deposition. Effect of varying the sublayer thickness in multilayer films consisting of alternating layers of ``hard`` (68.4 GPa, -100 V bias) and ``soft`` (27.5 GPa, - 200 V bias) was investigated. Films consisting of equal thickness layers of hard and soft material and an individual layer thickness varying from 10 to 35 nm were deposited. Mechanical property measurements were obtained by finite element modeling of nanoindentation load-displacement curves. The film hardness values were about 20% below the average of the component layers and relatively independent of the layer thickness. TEM revealed deterioration of the multilayer structure when the sublayer thickness was below 15 nm due to implantation damage of the hard layers caused by the energetic C{sup +} ions of the soft layers (-2000 V bias) deposited over them. Pin-on-disk wear tests show that the wear rate drops when sublayer thickness is decreased below 20 nm and remains constant with further decreases in the layer thickness

    Crystallographic study on CH/O interactions of aromatic CH donors within proteins

    Get PDF
    CH/O interactions represent weak hydrogen bonds that stabilize protein structures where they contribute up to 25% among the total number of detected hydrogen bonds. Previously, we showed that CH/O interactions do not show strong preference for linear contacts and that the energy of CH/O interactions of aromatic CH donors depends on the type of atom or group in ortho-position to the interacting CH group [1, 2]. In this work, CH/O interactions of aromatic CH donors within proteins have been studied by analyzing the data in the Protein Data Bank (PDB) and by quantum chemical calculations of electrostatic potentials. The CH/O interactions were studied between three aromatic amino acids; phenylalanine, tyrosine and tryptophan, with several acceptors. The analysis of the distribution of the CHO angle in the crystal structures from the PDB indicates no preference for linear CH/O interactions between aromatic donors and acceptors in protein structures. Although there is no tendency for linear CH/O interactions, there is no significant number of bifurcated CH/O interactions. The analyses also indicate an influence of simultaneous classical hydrogen bonds. The influence is particularly observed in case of tyrosine. The hydroxyl group of aromatic ring of tyrosine plays an important role by forming a simultaneous classical hydrogen bond along with CH/O interaction in orthoposition to the OH substituent. These investigations could help in future CH/O interactions studies in proteins or other proteic systems.Belgrade, Serbia, June 20-24, 201

    Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with γ\gamma Beams of High Intensity and Large Brilliance

    Full text link
    We study the production of radioisotopes for nuclear medicine in (γ,xn+yp)(\gamma,x{\rm n}+y{\rm p}) photonuclear reactions or (γ,γ′\gamma,\gamma') photoexcitation reactions with high flux [(1013−101510^{13}-10^{15})γ\gamma/s], small diameter ∼(100 μ\sim (100 \, \mum)2)^2 and small band width (ΔE/E≈10−3−10−4\Delta E/E \approx 10^{-3}-10^{-4}) γ\gamma beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xxn+y + yp) reactions with (ion=p,d,α\alpha) from particle accelerators like cyclotrons and (n,γ\gamma) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ\gamma beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). (γ,γ′)(\gamma,\gamma') isomer production via specially selected γ\gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ\gamma beams allow to produce certain radioisotopes, e.g. 47^{47}Sc, 44^{44}Ti, 67^{67}Cu, 103^{103}Pd, 117m^{117m}Sn, 169^{169}Er, 195m^{195m}Pt or 225^{225}Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example 195m^{195m}Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47^{47}Sc, 67^{67}Cu and 225^{225}Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.Comment: submitted to Appl. Phys.

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix
    • …
    corecore