314 research outputs found

    Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed dd- and s-wave superconductor

    Full text link
    Based on the linearized Eilenberger equations, the upper critical field (Hc2)(H_{c2}) of mixed d- and s-wave superconductors has been microscopically studied with an emphasis on the competing effects of mass anisotropy and spin Zeeman coupling. We find the mass anisotropy always enhance Hc2H_{c2} while the Zeeman interaction suppresses Hc2H_{c2}. As required by the thermodynamics, we find Hc2H_{c2} is saturated at zero temperature. We compare the theoretical calculations with recent experimental data of YBa2_{2}Cu3_{3}O7+AFwdelta_{7-+AFw-delta}.Comment: To appear in PRB in Feb. 200

    Disease management at the wildlife-livestock interface: using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA

    Get PDF
    The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white‐tailed deer (deer) population. It has potentially substantial implications for the health and well‐being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well‐observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife‐livestock interface, providing insights into bTB management in an endemic system

    Gravitation with superposed Gauss--Bonnet terms in higher dimensions: Black hole metrics and maximal extensions

    Get PDF
    Our starting point is an iterative construction suited to combinatorics in arbitarary dimensions d, of totally anisymmetrised p-Riemann 2p-forms (2p\le d) generalising the (1-)Riemann curvature 2-forms. Superposition of p-Ricci scalars obtained from the p-Riemann forms defines the maximally Gauss--Bonnet extended gravitational Lagrangian. Metrics, spherically symmetric in the (d-1) space dimensions are constructed for the general case. The problem is directly reduced to solving polynomial equations. For some black hole type metrics the horizons are obtained by solving polynomial equations. Corresponding Kruskal type maximal extensions are obtained explicitly in complete generality, as is also the periodicity of time for Euclidean signature. We show how to include a cosmological constant and a point charge. Possible further developments and applications are indicated.Comment: 13 pages, REVTEX. References and Note Adde

    Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife

    Get PDF
    Numerous species of mammals are susceptible to Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). Several wildlife hosts have emerged as reservoirs of M. bovis infection for domestic livestock in different countries. In the present study, blood samples were collected from Eurasian badgers (n=1532), white-tailed deer (n=463), brushtail possums (n=129), and wild boar (n=177) for evaluation of antibody responses to M. bovis infection by a lateral-flow rapid test (RT) and multiantigen print immunoassay (MAPIA). Magnitude of the antibody responses and antigen recognition patterns varied among the animals as determined by MAPIA; however, MPB83 was the most commonly recognized antigen for each host studied. Other seroreactive antigens included ESAT-6, CFP10, and MPB70. The agreement of the RT with culture results varied from 74% for possums to 81% for badgers to 90% for wild boar to 97% for white-tailed deer. Small numbers of wild boar and deer exposed to M. avium infection or paratuberculosis, respectively, did not cross-react in the RT, supporting the high specificity of the assay. In deer, whole blood samples reacted similarly to corresponding serum specimens (97% concordance), demonstrating the potential for field application. As previously demonstrated for badgers and deer, antibody responses to M. bovis infection in wild boar were positively associated with advanced disease. Together, these findings suggest that a rapid TB assay such as the RT may provide a useful screening tool for certain wildlife species that may be implicated in the maintenance and transmission of M. bovis infection to domestic livestock.The authors are grateful to Peter Andersen and Jim McNair for kindly providing certain antigens used in C this study. Badger samples were taken under projects funded by the Department for Environment, Food, and Rural Affairs (Defra), UK. The authors acknowledge the support of staff from CSL, VLA Starcross, Defra Wildlife Unit, and permission from the Independent Scientific Group for use of sera from the RBCT. Spanish wild boar samples were obtained with support from MEC Plan Nacional AGL2005-07401 and Santander - Fundacion M. Botin

    Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway

    Get PDF
    AbstractCancer stem cells were identified in a feline mammary carcinoma cell line by demonstrating expression of CD133 and utilising the tumour sphere assay. A population of cells was identified that had an invasive, mesenchymal phenotype, expressed markers of pluripotency and enhanced tumour formation in the NOD-SCID mouse and chick embryo models. This population of feline mammary carcinoma stem cells was resistant to chemotherapy and radiation, possibly due to aberrant activation of the ATM/p53 DNA damage pathway. Epithelial–mesenchymal transition was a feature of the invasive phenotype. These data demonstrate that cancer stem cells are a feature of mammary cancer in cats

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Software quality management improvement through mentoring: an exploratory study from GSD projects

    Get PDF
    Proceeding of: OTM 2011 Workshops: Confederated InternationalWorkshops and Posters: EI2N+NSF ICE, ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011Software Quality Management (SQM) is a set of processes and procedures designed to assure the quality of software artifacts along with their development process. In an environment in which software development is evolving to a globalization, SQM is seen as one of its challenges. Global Software Development is a way to develop software across nations, continents, cultures and time zones. The aim of this paper is to detect if mentoring, one of the lead personnel development tools, can improve SQM of projects developed under GSD. The results obtained in the study reveal that the influence of mentoring on SQM is just temperate

    Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis

    Get PDF
    Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways
    corecore