1,071 research outputs found

    Atomic force microscopy of supported planar membrane bilayers

    Get PDF
    Membrane bilayers of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) adsorbed to a freshly cleaved mica substrate have been imaged by Atomic Force Microscopy (AFM). The membranes were mounted for imaging by two methods: (a) by dialysis of a detergent solution of the lipid in the presence of the substrate material, and (b) by adsorption of lipid vesicles onto the substrate surface from a vesicle suspension. The images were taken in air, and show lipid bilayers adhering to the surface either in isolated patches or in continuous sheets, depending on the deposition conditions. Epifluorescence light-microscopy shows that the lipid is distributed on the substrate surfaces as seen in the AFM images. In some instances, when DPPE was used, whole, unfused vesicles, which were bound to the substrate, could be imaged by the AFM. Such membranes should be capable of acting as natural anchors for imaging membrane proteins by AFM

    Asexual reproduction in introduced and native populations of the ant Cerapachys biroi.

    Get PDF
    Asexual reproduction is particularly common among introduced species, probably because it helps to overcome the negative effects associated with low population densities during colonization. The ant Cerapachys biroi has been introduced to tropical and subtropical islands around the world since the beginning of the last century. In this species, workers can reproduce via thelytokous parthenogenesis. Here, we use genetic markers to reconstruct the history of anthropogenic introductions of C. biroi, and to address the prevalence of female parthenogenesis in introduced and native populations. We show that at least four genetically distinct lineages have been introduced from continental Asia and have led to the species' circumtropical establishment. Our analyses demonstrate that asexual reproduction dominates in the introduced range and is also common in the native range. Given that C. biroi is the only dorylomorph ant that has successfully become established outside of its native range, this unusual mode of reproduction probably facilitated the species' worldwide spread. On the other hand, the rare occurrence of haploid males and at least one clear case of sexual recombination in the introduced range show that C. biroi has not lost the potential for sex. Finally, we show that thelytoky in C. biroi probably has a genetic rather than an infectious origin, and that automixis with central fusion is the most likely underlying cytological mechanism. This is in accordance with what is known for other thelytokous eusocial Hymenoptera

    Robust DNA Methylation in the Clonal Raider Ant Brain.

    Get PDF
    Social insects are promising model systems for epigenetics due to their immense morphological and behavioral plasticity. Reports that DNA methylation differs between the queen and worker castes in social insects [1-4] have implied a role for DNA methylation in regulating division of labor. To better understand the function of DNA methylation in social insects, we performed whole-genome bisulfite sequencing on brains of the clonal raider ant Cerapachys biroi, whose colonies alternate between reproductive (queen-like) and brood care (worker-like) phases [5]. Many cytosines were methylated in all replicates (on average 29.5% of the methylated cytosines in a given replicate), indicating that a large proportion of the C. biroi brain methylome is robust. Robust DNA methylation occurred preferentially in exonic CpGs of highly and stably expressed genes involved in core functions. Our analyses did not detect any differences in DNA methylation between the queen-like and worker-like phases, suggesting that DNA methylation is not associated with changes in reproduction and behavior in C. biroi. Finally, many cytosines were methylated in one sample only, due to either biological or experimental variation. By applying the statistical methods used in previous studies [1-4, 6] to our data, we show that such sample-specific DNA methylation may underlie the previous findings of queen- and worker-specific methylation. We argue that there is currently no evidence that genome-wide variation in DNA methylation is associated with the queen and worker castes in social insects, and we call for a more careful interpretation of the available data

    Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution

    Get PDF
    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ~6 × 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production. Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng/L nano silver and 1.5 ng/L nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng/L and 150 ng/L, respectively. Predicted concentrations were usually highest in July

    High power femtosecond source based on passively mode-locked 1055nm VECSEL and Yb-fibre power amplifier

    No full text
    We report 5 ns pulses at 160 W average power and 910 repetition rate from a passively mode-locked VECSEL source seeding an Yb-doped fibre power amplifier. The amplified pulses were compressed to 291 fs duration

    Translating antibiotic prescribing into antibiotic resistance in the environment: a hazard characterisation case study

    Get PDF
    The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a ‘sea’ of gut-derived resistance genes. Here we examine the potential for macrolide and fluoroquinolone prescribing in England to select for resistance in the River Thames catchment, England. We show that 64% and 74% of the length of the modelled catchment is chronically exposed to putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones, respectively. Under current macrolide usage, 115 km of the modelled River Thames catchment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquinolone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and 85%, respectively, to limit resistance selection in the catchment. Significant reductions in antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resistant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, particularly in mixtures, to better inform environmental risk assessments and mitigation

    The McKean-Vlasov Equation in Finite Volume

    Get PDF
    We study the McKean--Vlasov equation on the finite tori of length scale LL in dd--dimensions. We derive the necessary and sufficient conditions for the existence of a phase transition, which are based on the criteria first uncovered in \cite{GP} and \cite{KM}. Therein and in subsequent works, one finds indications pointing to critical transitions at a particular model dependent value, θ\theta^{\sharp} of the interaction parameter. We show that the uniform density (which may be interpreted as the liquid phase) is dynamically stable for θ<θ\theta < \theta^{\sharp} and prove, abstractly, that a {\it critical} transition must occur at θ=θ\theta = \theta^{\sharp}. However for this system we show that under generic conditions -- LL large, d2d \geq 2 and isotropic interactions -- the phase transition is in fact discontinuous and occurs at some \theta\t < \theta^{\sharp}. Finally, for H--stable, bounded interactions with discontinuous transitions we show that, with suitable scaling, the \theta\t(L) tend to a definitive non--trivial limit as LL\to\infty

    Mode structure and ray dynamics of a parabolic dome microcavity

    Get PDF
    We consider the wave and ray dynamics of the electromagnetic field in a parabolic dome microcavity. The structure of the fundamental s-wave involves a main lobe in which the electromagnetic field is confined around the focal point in an effective volume of the order of a cubic wavelength, while the modes with finite angular momentum have a structure that avoids the focal area and have correspondingly larger effective volume. The ray dynamics indicates that the fundamental s-wave is robust with respect to small geometrical deformations of the cavity, while the higher order modes are associated with ray chaos and short-lived. We discuss the incidence of these results on the modification of the spontaneous emission dynamics of an emitter placed in such a parabolic dome microcavity.Comment: 50 pages, 17 figure

    Linear Paul trap design for an optical clock with Coulomb crystals

    Full text link
    We report on the design of a segmented linear Paul trap for optical clock applications using trapped ion Coulomb crystals. For an optical clock with an improved short-term stability and a fractional frequency uncertainty of 10^-18, we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the systematic frequency shifts of such a frequency standard. In particular, we elaborate on high precision calculations of the electric radiofrequency field of the ion trap using the finite element method. These calculations are used to find a scalable design with minimized excess micromotion of the ions at a level at which the corresponding second- order Doppler shift contributes less than 10^-18 to the relative uncertainty of the frequency standard

    Pair fluctuation induced pseudogap in the normal phase of the two-dimensional attractive Hubbard model at weak coupling

    Full text link
    One-particle spectral properties in the normal phase of the two-dimensional attractive Hubbard model are investigated in the weak coupling regime using the non-selfconsistent T-matrix approximation. The corresponding equations are evaluated numerically directly on the real frequency axis. For temperatures sufficiently close to the superconducting transition temperature a pseudogap in the one-particle spectral function is observed, which can be assigned to the increasing importance of pair fluctuations.Comment: 22 pages, 13 figure
    corecore