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Abstract

The environment receives antibiotics through a combination of direct application (e.g., aqua-

culture and fruit production), as well as indirect release through pharmaceutical manufactur-

ing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers

are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics

are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it

is difficult to distinguish the selective role of effluent antibiotics within a ‘sea’ of gut-derived

resistance genes. Here we examine the potential for macrolide and fluoroquinolone pre-

scribing in England to select for resistance in the River Thames catchment, England. We

show that 64% and 74% of the length of the modelled catchment is chronically exposed to

putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones,

respectively. Under current macrolide usage, 115 km of the modelled River Thames catch-

ment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquino-

lone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds

the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating

measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and

85%, respectively, to limit resistance selection in the catchment. Significant reductions in

antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for

achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resis-

tant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, par-

ticularly in mixtures, to better inform environmental risk assessments and mitigation.

Introduction

The environment receives antibiotics through a combination of direct application (e.g., aqua-

culture and fruit production), as well as indirect release through pharmaceutical manufactur-

ing, sewage and animal manure [1,2]. As part of a One Health approach, the global agenda

aims to reduce antibiotic use and misuse in human, animal and agriculture with downstream

benefits to the environment [3–6]. To this end, in 2013 Professor Dame Sally Davies, the Chief

Medical Officer (CMO) for England and Chief Medical Advisor to the UK government,
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published her Annual Report [7] in which she argued for a reduction in inappropriate pre-

scribing of antimicrobials in the UK. In response, the National Health Service of England

(NHS) proposed targeted reductions in antibiotic prescriptions as part of the Quality Premium

Programme (QPP) [8].

The QPP in 2015/16 aimed to reduce antibiotic over-use and inappropriate prescribing

through a reduction in:

1. the number of antibiotics prescribed in primary care by�1% from each Clinical Commis-

sioning Group (CCG’s) 2013/14 value;

2. the proportion of broad-spectrum antibiotics prescribed in primary care. Specifically, the

QPP aims to reduce prescriptions of co-amoxiclav, cephalosporins and fluoroquinolones

by 10% (from each CCG’s 2013/14 value) as a percentage of the total number of antibiotics

prescribed in primary care, or to be below the 2013/14 median proportion for English

CCGs (11.3%), whichever represents the smallest reduction.

The NHS of England successfully reduced their antibiotic prescriptions in 2015/16 by 7.3%

(37.03 million items to 34.34 million) as compared to 2014/15. The NHS also saw a reduction

of 16% in broad-spectrum antibiotics (3.94 million items to 3.3 million). The goal for 2016/17

was, in part, to reduce total antibiotic prescribing in primary care by 4% (based on 2013/14)

and broad-spectrum antibiotics by 20% (based on 2014/15). The majority of the reductions

seen in 2016/17 were for amoxicillin, co-amoxiclav, and some cephalosporins, not macrolides

or fluoroquinolones. The only exceptions being erythromycin, which saw a reduction in con-

sumption in the primary care setting, of 0.078 DDDs and azithromycin which saw an increase

of 0.023 DDDs per 1000 inhabitants per day in England [9].

Any reduction in antibiotic prescribing would result in a proportional reduction in antibi-

otics released into wastewater. This is because a significant fraction of antibiotics are conserved

as they pass through the body before being excreted as a mixture of the parent compound and

metabolites in the urine and faeces [10,11]. The gut bacteria from hundreds of thousands of

antibiotic-consuming NHS patients would have been enriched in antibiotic resistance, a phe-

nomenon that is unavoidable upon consumption of antibiotics [12], and released along with

the antibiotics into the receiving river. Antibiotic concentrations in many sewage-impacted

rivers are thought to be sufficient to select for antibiotic resistance genes [13–18]. However,

because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria

in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a ‘sea’

of gut-derived resistance genes [19,20]. The effects of this phenomena are most evident down-

stream a sewage treatment plant (STP) discharge point as compared to upstream, for which

examples can be found globally [20–25].

This study focused on two questions that explore the link between antibiotic use and envi-

ronmental impact:

1. To what extent might current macrolide and fluoroquinolone prescribing contribute to

antibiotic resistance selection in sewage-impacted rivers in southern England?

2. How much of a reduction in macrolide and fluoroquinolone prescribing might be required

to alleviate the hazard of antibiotic resistance selection in rivers, if it was the sole means of

mitigating environmental load?

The study focused on macrolides and fluoroquinolones because: 1) they are two of the

more persistent classes of antibiotics in vivo and the environment, and as such, are found in

nearly all antibiotic surveillance studies [26–31]; 2) they have significant clinical relevance

[32]; and, 3) macrolides are on the EU Watch List of Decision 2015/495/EU [33,34].
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The River Thames catchment (i.e., Thames Basin) in southern England was selected for this

study as it is the most highly populous catchment in the United Kingdom (nearly 4 million

people). It also might be seen as a realistic worst-case scenario, as this part of England is in the

25th quartile of predicted values of annual dilution factors, i.e., between 2.24 and 6.26 [35].

Many river stretches within the catchment offer little opportunity for dilution, maximising the

impact of antibiotics found in the discharged sewage. Furthermore, the catchment has previ-

ously been the subject of several studies investigating predicted environmental concentrations

of pharmaceuticals [30,36–38].

Materials and methods

Prescription data

Macrolide prescribing data for each month of 2015/16 were acquired from the NHS Business

Service Authority (NHSBSA), i.e., azithromycin, clarithromycin and erythromycin (Fig 1A).

Fluoroquinolone prescribing data for each month of 2015/16 were also acquired from the

NHSBSA, i.e., ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin and ofloxacin (Fig 1B).

Prescription data were acquired from four Clinical Commissioning Groups (CCGs): Oxford-

shire, Gloucestershire, Swindon and Wiltshire, all of which are situated in the upper River

Thames catchment (Fig 2). It was not possible to reliably assign CCG prescriptions to STPs in

the lower Thames catchment owing to the small geographic size of the CCGs and high popula-

tion density. As such, all other CCGs within the catchment were assigned the prescription rate

of NHS Oxfordshire CCG.

NHS prescription data for each CCG per month in 2014/15 were converted to units of kg

(Table 1), and then moles (Table 2) of macrolide and fluoroquinolone and subsequently nor-

malised to the population within each CCG (Table 3). In the case of erythromycin, the three

forms of erythromycin (erythromycin, erythromycin ethyl succinate and erythromycin stea-

rate) were converted individually and summed.

Antibiotic excretion rate

The excretion of antibiotics in the faeces and urine depends on its metabolism in vivo, which is

a function of health, age, gender, ethnicity, as well as dosage and mode of administration, e.g.,

capsule, injection. Given the large uncertainty associated with estimating excretion rates across

diverse populations, an average rate acquired from the literature was used: macrolide excretion

rate of 32.2% and 64.2% for fluoroquinolones (Table 4). These rates are consistent with excre-

tion rates used in Besse et al. 2008 [39], which were subsequently used to inform the “Develop-

ment of the first Watch List under the Environmental Quality Standards Directive”[40].

Excretion rates are inclusive of well characterised conjugated metabolites of antibiotics that

can be ‘reactivated’ in the environment. For example, the urinary and biliary elimination of

ciprofloxacin as metabolites respectively represents 12.5 and 2.3% of the dose (total: 14.8%),

only a fraction of which is likely to be reactivated in the environment [41].

Antibiotic loss in STPs

The antibiotic loss in STPs was modelled using STPWIN model within the Estimation Pro-

gram Interface (EPI) SuiteTM 4.0, using the Biowin/EPA draft method for determining half-life

data as previously described [37]. Estimates of loss in STPs was also acquired from the litera-

ture [46–51], with some relevant data acquired from STPs within the River Thames catchment

found in Table 5. These data support the use of 50% loss during STP passage, which is a com-

promise between measured loss and the high variability reported within the literature.

Translating antibiotic prescribing into antibiotic resistance in the environment
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Modelled environmental concentrations of antibiotics

Low Flows 2000 Water Quality eXtension (LF2000-WQX) model [38,53] is an extension to the

LF2000 [54]. LF2000 is a decision support tool designed to estimate river flow at gauged and

ungauged sites and to assist regional water resources and catchment management. The

LF2000-WQX software is a geographical information-based system that combines hydrologi-

cal models with a range of water-quality models, including a catchment-scale water-quality

Fig 1. Macrolides (A) and fluoroquinolones (B) included in the study.

https://doi.org/10.1371/journal.pone.0221568.g001
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model. This model generates spatially explicit statistical distributions of down-the-drain chem-

icals for both conservative and degradable compounds. It uses a Monte Carlo model approach

to combine statistical estimates of chemical loads at specific emission points (e.g., STP) with

estimated river flow distributions for the whole river network of interconnected model reaches

(a reach is the river stretch between model features, e.g., major tributaries, STPs). The hydro-

metric area of the River Thames catchment and the STPs included in LF2000-WQX (black

points) can be seen in Fig 2. Thus, working from the upstream reaches at the head of the river

network to the outlet of the river basin, the model accounts for the accumulation of point

Fig 2. Hydrometric area of Thames Region with the four CCGs in the upper Thames. Catchment denoted in yellow.

https://doi.org/10.1371/journal.pone.0221568.g002

Table 1. Mass of macrolides and fluoroquinolones prescribed in the study CCGs in 2015/16.

Oxfordshire (kg) Gloucestershire (kg) Swindon

(kg)

Wiltshire

(kg)

Macrolides Azithromycin 21.8 18.9 4.5 12.6

Clarithromycin 179.5 322.7 66.7 198.0

Erythromycin 97.3 80.7 50.6 82.3

Erythromycin ethyl succinate 120.8 79.0 32.3 34.4

Erythromycin

stearate

12.4 5.4 4.3 5.0

Total of macrolides (kg) 431.8 506.7 158.4 332.3

Fluoroquinolones Ciprofloxacin 93.8 94.6 29.5 72.2

Levofloxacin 0.3 4.6 0 0.3

Moxifloxacin 0.5 0.1 0.1 0.2

Norfloxacin 0 0 0.1 0

Ofloxacin 2.2 4.1 0.7 1.0

Total of fluoroquinolones (kg) 96.8 103.4 30.4 73.7

https://doi.org/10.1371/journal.pone.0221568.t001
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antibiotic loads and the water in which these loads are diluted. Degradable chemicals might be

removed from STPs and the river water. The latter is represented by a non-specific dissipation

process assuming first-order kinetics. Antibiotics were assumed to persist in the river for at

least one day, thereby providing a realistic worst-case scenario.

In summary, LF2000-WQX was parameterised with the highest monthly fluoroquinolone

and macrolide prescription rate for each of the four CCGs (see bolded rates in Table 4).

Macrolide and fluoroquinolone loss was accounted for upon excretion (32.2% and 64.2%,

respectively) and before discharge from STPs into the receiving river (50%). As such, the mass

of macrolide and fluoroquinolone consumed was reduced by 83.9% and 67.9%, respectively,

upon discharge into the adjacent river. The antibiotic load was subsequently diluted within the

river, parameterised with the mean annual river flows within LF2000-WQX.

Risk-based targets for antibiotics

Risk-based management targets for antibiotics in freshwater would ideally be set at concentra-

tions that are below the lowest concentration that allows antibiotics to select for antibiotic

Table 2. Molecular weights of macrolides and fluoroquinolones.

Macrolides Molecular weight (g/mol) Quinolones Molecular weight (g/mol)

Azithromycin 748.98 Ciprofloxacin 331.34

Clarithromycin 747.95 Levofloxacin 361.36

Erythromycin 733.90 Moxifloxacin 401.43

Erythromycin ethyl succinate 862.10 Norfloxacin 319.33

Erythromycin stearate 1018.40 Ofloxacin 361.36

https://doi.org/10.1371/journal.pone.0221568.t002

Table 3. Moles of macrolides (M) and fluoroquinolones (F) prescribed capita-1 day-1 month-1 within each CCG.

CCGs Oxfordshire1 Swindon2 Gloucestershire3 Wiltshire4

Population 666100 231277 624000 500000

Antibiotics M F M F M F M F

×10−7 mol

January 30.4 13.3 24.8 12.5 27.9 12.7 23.4 11.5

February 28.7 12.8 28.4 11.2 36.7 16.4 30.2 13.9

March 28.1 11.7 30.5 11.8 36.8 15.5 28.0 11.8

April 23.6 11.9 26.0 11.1 30.4 12.5 25.8 11.8

May 21.3 11.1 22.8 9.50 26.9 13.6 23.1 10.9

June 22.5 12.0 25.6 12.9 28.8 13.1 24.2 11.8

July 20.5 11.5 24.8 11.3 26.7 13.6 22.5 12.3

August 10.2 11.6 18.2 9.40 22.0 12.0 19.9 12.4

September 20.9 11.2 22.3 9.30 25.2 13.7 22.3 12.4

October 22.0 12.3 22.1 10.9 27.8 13.6 22.3 12.8

November 22.2 12.1 22.1 9.80 29.1 12.5 21.6 11.4

December 23.4 12.6 25.4 10.0 31.8 14.4 25.6 12.9

Population statistics are provided by the respective Annual Report for the CCG. Bolded values in each column represent the month with the maximum prescription rate

in 2015. These were selected for use in the model to ensure a realistic worst-case scenario.
1 NHS Oxfordshire CCG Annual Report
2 NHS Swindon CCG Annual Report
3 NHS Gloucestershire CCG Annual Report
4 NHS Wiltshire CCG Annual Report

https://doi.org/10.1371/journal.pone.0221568.t003
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resistance genes, referred to as a Predicted No Effect Concentration for selection (PNEC) [55].

Lowest effect concentrations have been determined experimentally in a limited number of lab-

based studies, operationally termed minimum selection concentrations (MSC). MSCs typically

range between 0.1 to 10 μg of antibiotic/L [14,16,17,55–64].

Modelled PNECs were acquired from Bengtsson-Palme and Larsson (2016) owing to the

absence of empirically-determined MSCs for most of the study antibiotics. The PNECs derived

in Bengtsson-Palme and Larsson (2016) were selected to inform antibiotic discharge limits

from pharmaceutical manufacturing by the AMR Industry Alliance [65]. The PNECs represent

the threshold concentration of an antibiotic, above which, there is a heightened hazard of anti-

biotic resistance selection. PNECs were derived from the European Committee on Antimicro-

bial Susceptibility Testing (EUCAST) database of minimum inhibitory concentrations to form

species sensitivity distributions [37]. The authors selected the concentration of each antibiotic

representing the 1% potentially affected fraction (PAF). A safety factor of 10 was added to this

1% PAF to account for the observation that experimentally-derived resistance selection thresh-

olds tend to be approximately an order of magnitude lower than the MIC, while also offering

an added level of protection to the estimate. The 111 antibiotic thresholds reported in Bengts-

son-Palme and Larsson 2016 ranged from 0.008 μg/L to 64 μg/L.

PNECs for fluoroquinolones ranged from 0.064 to 0.5 μg/L and for macrolides 0.25 to 1 μg/

L (Table 6). When predicted environmental concentrations (PECs) of macrolides and fluoro-

quinolones exceeded the PNEC for the most ‘potent’ antibiotic within each class, e.g., cipro-

floxacin for fluoroquinolones and azithromycin/clarithromycin for macrolides, the stretch of

Table 4. Human excretion of fluoroquinolones and macrolides as a percentage of the parent compound.

Class of Antibiotic Antibiotics Excretion (% of parent compound)

Fluoroquinolones Ciprofloxacin 53.8 [42], 40 [43], 50 [11], 45–60 [44]

Levofloxacin 71 (60–80) [42], 70 [43]

Moxifloxacin 60 [45]

Norfloxacin 61.5 [42], 30 [43]

Macrolides Ofloxacin 75.8 (60–80) [42], 100 [11]

Azithromycin 50 [11], 50 [44], 8 [43]

Clarithromycin 33.7 (14.4–60) [42], 20 [43], 0.18 [11]

Erythromycin 35 (3.5–98) [42], 8 [43], 12–15 [44]

https://doi.org/10.1371/journal.pone.0221568.t004

Table 5. Measured antibiotics concentration in STPs and rivers within the Thames Catchment (ng/L) [52].

Macrolide Fluoroquinolone

CLAR ERY AZO CIP NOR OFL

Eff–Oxford� 98 (338–1504) 156 (69–264)

Eff–Didcot� 104 (160–305) 110 (74–216)

Eff–Cholsey� 181 (128–321) 91 (48–135)

Eff–Benson� 152 (87–254) 76 (35–133)

Eff–Benson�� 50 244 34 14 25 195

Eff–Oxford�� 91 236 30 52 21 23

Thames var.��� 292, 30 448, 58 51, 21 46, 20 45, 9 17, 11

Eff sewage effluent, CLAR clarithromycin, ERY erythromycin, AZO azithromycin, CIP ciprofloxacin, NOR norfloxacin, OFL ofloxacin

� Mean (highest–lowest) measured

��24-h mean concentration [30]

���Max and mean concentration for 21 locations at 7 time points [30]

https://doi.org/10.1371/journal.pone.0221568.t005
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river was denoted as being ‘at risk’ for resistance selection. When the PEC> PNEC for the

least ‘potent’ antibiotic within each class, e.g., norfloxacin/ofloxacin for fluoroquinolones and

erythromycin for macrolides, the stretch of river was denoted as being at a ‘critical risk’ of

resistance selection.

Results

This study aimed to understand the degree of resistance selection that might be occurring in

the River Thames catchment under current macrolide and fluoroquinolone prescribing prac-

tice by the NHS as well as after foreseeable and aspirational reductions in prescribing. The

objective was to estimate the level of reduction in NHS antibiotic prescribing that might be

necessary to reduce the hazard of resistance selection in sewage-impacted rivers.

The maxima PECs for macrolides and fluoroquinolones prescribed in 2015/16 were 4.3 μg/

L and 2.0 μg/L, respectively. Hazard characterisation revealed 279 out of 457 reaches in the

catchment are ‘at risk’ or ‘critical’ for macrolide resistance selection (Fig 3A)—equating to

1155 of 1398 km of the modelled River Thames catchment (64.0% of the total catchment

length modelled). Similarly, 311 reaches out of 457 were ‘at risk’ or ‘critical’ for fluoroquino-

lone resistance selection (Fig 3B)—equating to 1026 of 1398 km (73.7% of the modelled river

length in the catchment).

Table 7 contains the sum (km) and fractional river length that exceeds the PNEC for the

most and least ‘potent’ macrolide and fluoroquinolone; operationally defined as ‘critical’ and

‘at risk’ of resistance selection, respectively. The length and % of river lengths that exceed mul-

tiples (2-5x) of the PNEC are also presented. Such analysis reveals that under current macro-

lide usage, 115 km of the modelled River Thames catchment exceeds the PNEC for ‘at risk’ by

5-fold (8% of modelled catchment length; Table 7). Similarly, under current fluoroquinolone

usage, 222.9 km of the modelled River Thames catchment exceeds the PNEC for ‘at risk’ by

5-fold (16% of modelled catchment length). Nearly one-fifth of the catchment length exceeds

the macrolide PNEC for ‘critical’ under current usage, whereas fluoroquinolones exceed the

PNEC for ‘critical’ in only 5% of the catchment length. Macrolide levels in the river exceed

double the ‘critical’ PNEC in 5% of the catchment length, whereas fluoroquinolones, at such

levels, are exceeded in<1% of the catchment length (Table 7).

Consistent with the 2015/16 QPP goals, a 4% reduction in macrolide prescribing saw a

3.8% reduction in the length of the modelled Thames catchment ‘at risk’ for macrolide resis-

tance selection (273 reaches and 830 km, equal to 59.4% of the catchment), and a 0.1% reduc-

tion in the length of the modelled Thames catchment ‘at risk’ for fluoroquinolone resistance

selection (310 reaches and 1025.1 km, equal to 73.3% of the catchment).

Table 6. Modelled PNECs for macrolides and fluoroquinolones [55].

Antibiotic class Antibiotic PNEC (μg/L) PNEC

(10−10 mol/L)

Fluoroquinolones Ciprofloxacin 0.064 1.9

Levofloxacin 0.25 6.9

Moxifloxacin 0.125 3.1

Norfloxacin 0.5 15.7

Ofloxacin 0.5 13.8

Macrolides Azithromycin 0.25 3.3

Clarithromycin 0.25 3.3

Erythromycin 1 9.8

https://doi.org/10.1371/journal.pone.0221568.t006
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A more ambitious 20% reduction of the 2015/16 prescription rate of macrolides resulted in

an 8.9% reduction in the length of the modelled Thames catchment ‘at risk’ for macrolide

resistance selection (254 reaches and 759 km, equal to 54.3% of the catchment). A 20% reduc-

tion in fluoroquinolones resulted in a 5.4% reduction in the length of the modelled Thames

Fig 3. Resistance selection risk characterisation for (A) macrolides and (B) fluoroquinolones using 2015/16 prescription

statistics.

https://doi.org/10.1371/journal.pone.0221568.g003
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catchment ‘at risk’ for fluoroquinolone resistance selection (296 reaches and 949 km, equal to

68.0% of the catchment).

A sensitivity analysis was conducted to identify the NHS prescribing rate that protects

�90% of the length of the modelled Thames catchment from macrolide and fluoroquinolone

resistance selection. A target of 90% was a pragmatic decision, as many rivers in England are

highly impacted by, or solely composed of, sewage effluent—particularly in headwaters.

Hence, a target of 100% would be unrealistic and necessitate even more dramatic reductions in

antibiotic use or zero effluent discharge.

The sensitivity analysis revealed that macrolide prescriptions must decline by 77% to pro-

tect 90.4% of the length of the Thames catchment from macrolide resistance selection (Table 8;

Fig 4A). Even at this much-reduced prescription rate, there were still 13 reaches with a total

length of 8.5 km (0.6%) remaining ‘critical’ for macrolide resistance selection (Fig 4A). Fluoro-

quinolone prescriptions would need to be reduced by 85% to alleviate the selection risk in 90%

of the catchment (Table 8; Fig 4B).

Discussion

The goal of this study was to evaluate how antibiotic prescribing, alone, contributes to antibi-

otic resistance selection in the aquatic environment. Such a perspective is fundamentally naïve

as the catchment contains considerable land for grazing and is at risk of receiving animal

Table 7. Sum and fractional river length exceeding the PNEC and multiples of the PNEC for macrolides and fluoroquinolones.

Selection Hazard PNEC

(10−10 mM)

Multiple of PNEC

Macrolide 1x 2x 3x 4x 5x

River length (km)

Sum > at risk 3.3 895.0 469.0 266.2 174.5 115.5

Sum > critical 9.8 270.3 75.5 16.3 3.7 0.4

River length (%)

% > at risk 3.3 64.0% 33.6% 19.1% 12.5% 8.26%

% > critical 9.8 19.3% 5.41% 1.17% 0.26% 0.03%

Fluoroquinolone River length (km)

Sum > at risk 1.9 1030.2 724.1 473.4 351.1 222.9

Sum > critical 15.7 81.6 11.1 0.1 0.0 0.0

River length (%)

% > at risk 1.9 73.7% 51.8% 33.9% 25.1% 16.0%

% > critical 15.7 5.84% 0.79% 0.01% 0.00% 0.00%

https://doi.org/10.1371/journal.pone.0221568.t007

Table 8. Sensitivity analysis for the level of reduction in prescriptions needed to protect 90+% of the length of the modelled River Thames catchment from resis-

tance gene selection.

% Reduction in Prescriptions Number of reaches ‘at risk’ or ‘critical’ Length ‘at risk’ or ‘critical’ (km) % Length ‘at risk’ or ‘critical’

Macrolides 80 69 110 7.9

77 82 134 9.6

76 86 157 11.2

75 93 169 12.1

Fluoroquinolones 85 82 135 9.6

84 88 157 11.2

83 96 175 12.5

80 118 215 15.4

https://doi.org/10.1371/journal.pone.0221568.t008
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Fig 4. Hazard characterisation for (A) macrolide and (B) fluoroquinolone resistance selection after a reduction of 77% and 85% in

prescriptions, respectively, on 2015/16 rates. Red circles in (A) indicate nine locations where the concentrations remained ‘at critical’ levels.

https://doi.org/10.1371/journal.pone.0221568.g004
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waste containing antibiotics. Pollutants found in sewage, agriculture, and street runoff can co-

select for antibiotic resistance, making this model a conservative estimate of the hazard of

resistance selection [66–68].

A non-trivial proportion of the resistance genes found downstream of STPs originate from

human gut bacteria, many of which have acquired resistance in vivo, perhaps during antibiotic

treatment of human infections [69–71]. Antibiotic-resistance genes disseminated from anthro-

pogenic sources into the environment are pollutants [72,73] maintained and spread through a

combination of mechanisms: 1) survival of enteric bacteria in the environment and wildlife

[74–76]; 2) horizontal gene transfer of resistance genes from enterics into indigenous environ-

mental bacteria [77]; 3) selection and co-selection taking place in situ [17,78,79] and 4) trans-

formation of extracellular DNA (eDNA) containing antibiotic resistance genes into

environmental bacteria [80]. In environments naïve to antibiotics, antibiotic exposure selects

for overgrowth of resistant bacteria, while simultaneously selecting for the assembly and evolu-

tion of complex genetic vectors encoding, expressing, linking, and spreading that and other

resistance genes throughout the microbial population [81]. Once evolved, a competitive con-

struct can spread globally, such as the plasmid-borne mcr-1 [82] and blaCTX-M-14 [83]. Dissem-

ination of mcr-1 and blaCTX-M-14, in particular, has been attributed to conjugative plasmids

rather than to clonal expansion of a bacterial host strain owing to the high level of clonal diver-

sity [83–85]. Conversely, in environments not naïve to antibiotics, where antibiotic exposure is

chronic, might not experience an ‘overgrowth of resistant bacteria’ as the microbial commu-

nity is already well-adapted to such chemical challenges. Arguably, such areas where there is

chronic antibiotic exposure and the luxury of time (i.e., sewage-impacted rivers), there is an

elevated hazard of novel evolutionary adaptations, e.g., novel gene assembly, epistasis and

compensatory mutations, that can address the reduced fitness costs associated with harbouring

antibiotic resistance genes [86,87].

Evidence of antibiotic-resistant microorganisms recovered from the River Thames catch-

ment has been reported in the literature. Djanji et al. 2011, isolated extended-spectrum β-lacta-

mase-producing Escherichia coli (blaCTX-M-14) belonging to the clinically important O25b:

H4-ST131 lineage from the River Thames in west London [88]. Amos et al. 2015, analysed sed-

iment samples from thirteen sites across the River Thames basin for class 1 integron preva-

lence and cefotaxime- (third-generation cephalosporin)-resistant E. coli [21]. The authors

reported antibiotic resistance was strongly correlated to the proximity and size of upstream

STPs. Lehmann et al. 2016, showed a rapid increase in class 1 integrons (intI1) in natural river

biofilms, within the Thames catchment, exposed to trace levels of additional STP effluent [89].

The statistically significant increase in intI1 reported within sewage-effluent-exposed periphy-

ton occurred without statistically significant changes in the microbial community. This result

was suggestive of increased horizontal gene transfer—a phenomenon that is important for the

dissemination of antibiotic resistance genes. Using a novel Raman-Deuterium Isotope Probing

technique, Song et al. 2017 reported 35±5%, 28±3%, 25±1% of the total bacterial population

recovered from the River Thames with resistance to carbenicillin-, kanamycin- and both anti-

biotics, respectively [90]. The use of a non-selective growth medium (D2O) and minimally-

destructive instrument for resistance detection (Raman) thereby minimises the culture bias

usually introduced into such determinations, potentially offering a more realistic measure of

the prevalence of antibiotic resistance within the microbiota of the River Thames.

Strengths and limitations

To our knowledge, this study is the first attempt to model the impact of current and aspira-

tional antibiotic prescribing in England on antibiotic resistance selection in freshwater rivers.
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The study’s approach reflects the state of our knowledge at this time, and as such, is limited in

many ways.

Heterogeneity of population. The results do not reflect the granular differences in pre-

scribing that are seen between small CCGs as there would be no way to attribute an antibiotic

user to a particular STP confidently. It is expected that if such an effort were possible, it would

highlight elevated antibiotics in STPs that have: older demographics (e.g., care homes [91]),

hospitals [92,93], and areas of inhabitants with elevated international travel [94,95]. Should

these STPs be located at or near headwaters, it would likely result in elevated hazards for anti-

biotic resistance selection resulting from lower effluent dilution. Conversely, when these high-

antibiotic users are located in stretches where there is sufficient dilution, the selection hazard

would be alleviated, somewhat.

Varied antibiotic stewardship within antibiotic class. In this model, we applied any

reductions in antibiotic prescribing, i.e., 4 or 20%, uniformly across all antibiotics within the

class. However, the use of antibiotics within a class are unlikely to be uniformly reduced. As a

result, some reductions in prescribing could delay or hasten the time to achieve ‘low risk’. For

example, ciprofloxacin is the most ‘potent’ fluoroquinolone in its class, with a PNEC of 64 ng/

L; ofloxacin and norfloxacin are less ‘potent’, with a PNEC of 500 ng/L. In other words, cipro-

floxacin is 7.8 times more potent than ofloxacin and norfloxacin. Hence, the benefit gained

from reducing 1 unit of ciprofloxacin necessitates a reduction in 7.8 units of ofloxacin or nor-

floxacin. As ciprofloxacin represents the majority of fluoroquinolone prescribed (96.9%;

Table 2), any reduction in ciprofloxacin is likely to have the maximum impact on fluoroquino-

lone resistance selection.

Similarly, macrolides azithromycin and clarithromycin have PNECs of 250 ng/L, four times

more potent than erythromycin (1000 ng/L). Prescription of macrolides varies considerably

between the four study CCGs (Tables 2 and 4), with clarithromycin (Gloucestershire and Wilt-

shire CCG) or erythromycin (Oxfordshire and Swindon) being the most frequently prescribed

macrolide. Hence, the CCGs that are overprescribing clarithromycin will find reduced macro-

lide prescriptions potentially more impactful owing to the higher potency of clarithromycin

relative to erythromycin.

Reliability of PNEC. The PNECs employed in this study have recently emerged as mod-

elled estimates for assessing the hazard of resistance selection [55]. To date, modelled PNECs

are consistent with the growing literature base [14,16,17,55–64], and as such, have been

adopted by the AMR Industry Alliance for establishing regulatory thresholds in antibiotic

manufacturing waste effluent [65]. There is a risk that the modelled PNECs are too protective,

and would encourage potentially costly and unnecessary mitigation. Conversely, modelled

estimates of single antibiotics might also underestimate selection risk, as antibiotic (pollutant)

mixtures can act synergistically, as discussed below. The academic community will need to

continually challenge the suitability of these PNECs and ensure they are fit for purpose.

Mixture effects. Recent experimental evidence suggests antibiotics can act synergistically

and antagonistically when in mixtures [96,97]. Tekin et al. 2018, reported that synergistic and

antagonistic interactions increased in frequency with the number of drugs in the bacteria’s

environment [97]. Hence, a non-trivial number of the modelled PNECs used in this study

could be over- as well as under-estimating the threshold for resistance selection when applied

to sewage-impacted rivers.

Brochado et al. 2018, demonstrated that many synergies were found within the same class

of antibiotic, in particular, where the same cellular process was targeted. The authors postu-

lated that by targeting the same functional process at different steps, drug combinations of the

same class could bypass the apparent redundancy of having multiple antibiotics within the

same class and exhibit a synergistic effect [96]. The authors also demonstrated that many of
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the drug antagonisms involve antibiotic resistance mechanisms that modulate intracellular

drug concentrations and not direct interactions of the primary drug targets. Hence, some anti-

biotic combinations were less inhibitory than expected (i.e., non-additive) because the cell’s

response to one drug helped to buffer the effects from the second drug. For example, a

decrease in the intracellular concentration of one drug by an efflux pump can potentially also

decrease the intracellular concentration of the interacting drug [96]. Notably, the authors

found that the drug-drug interactions were often conserved within species (70%), but with 13–

32% of the interactions strain-specific, and poor conservation across species (5% of drug-drug

interactions). It is premature to apply any specific drug-drug interactions to this model, but

future efforts should attempt to account for mixture effects as part of a holistic hazard

assessment.

Mixture effects with non-antibiotics. Another limitation of this study is that it does not

take into account the presence of many potentially relevant chemicals that are known to be

present in sewage and sewage-impacted rivers, such as:

1. antibiotics from agriculture and animal use [98];

2. biocides, which have been shown to co-select for antibiotic resistance genes [99–101];

3. metals, which have been shown to co-select for antibiotic resistance genes [102–105];

4. other classes of pharmaceuticals that might have synergistic or antagonistic impacts on

resistance selection [96,106,107] and

5. herbicides and pesticides that have been shown to co-select for resistance genes [108,109].

It is impractical to experimentally test all the chemicals found in sewage in isolation and

mixtures for the threshold concentration that allows for resistance selection, as there are sim-

ply too many. However, our environment can be assayed for such insight, by measuring the

diversity and quantity of antibiotic resistance genes in the river environment and their rela-

tionship to STPs, farms, hospitals, aquaculture, urban runoff, etc. Where ‘pristine’ environ-

ments still exist, they might serve as benchmarks for qualifying and quantifying ‘natural’

resistance gene prevalence and their biogeography. However, this might prove difficult as wild-

life have been implicated in the dissemination of human clinical resistance genes, making

‘pristine’ locations potentially unattainable [75]. Quantifying ‘natural’ resistance gene abun-

dance and prevalence remains critical for hazard assessment and establishing mitigation

targets.

LF2000-WQX limitations. LF2000-WQX generates PECs from STPs characterised by

dry weather flows of>5000 m3/d. A majority of the small STPs not included in the model are

located in the upper-most reaches of the catchment where flows are typically very low. Head-

waters impacted by small STPs are likely to have a disproportionate impact on seeding the

catchment with pharmaceuticals as well as antibiotic-resistant bacteria, the former of which

would further add to the total load of macrolides and fluoroquinolones in the catchment. The

omission of these STPs is unlikely to increase the antibiotic load in the catchment substantially;

however, it might impact the DNA ‘seeding’ and maintenance of antibiotic resistance.

Aspirational reductions in prescribing. In this study, we projected a decline in antibiotic

prescribing without considering the likely change in other important factors that would occur

concurrently with a gradual reduction in prescribing. An increasing and ageing UK population

will consume more pharmaceuticals per capita, increasing the antibiotic load. Dryer summers,

resulting from climate change, might impact the frequency PNECs are exceeded owing to

lower dilution [110,111]. More intense storms predicted in a changing climate would lead to

more frequent and longer combined sewage overflows (CSOs), which deposit raw sewage into
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the adjacent river, thereby elevating the release of resistant bacteria, genes and chemical pollut-

ants into the environment. CSOs, septic tanks, and farm runoff represent potentially signifi-

cant sources of antibiotics and resistance genes which would benefit from being included in

future models. However, such data is not currently available, representing a large knowledge

gap for risk assessment.

Validation of PECs. Previous research using LF2000-WQX to generate PECs, e.g., steroid

estrogens [38,112], glucocorticoids [113], cytotoxic chemotherapy drugs [114] and antivirals

[37], provides reassurance that the river network representation within LF2000-WQX is accu-

rate (i.e., network, flows, dilution and STPs). The modelled antibiotic concentrations from

LF2000-WQX, denoted by the PNEC thresholds in Table 6, are within the same range as mea-

sured environmental concentrations detailed in Table 5, lending credibility to the model

outputs.

Antibiotic stewardship. Reduction of antibiotics in the environment can be achieved

through a range of mitigating actions, the first of which can be through improved antibiotic

stewardship. The results of this study indicate that current goals for antibiotic stewardship do

not go far enough [5,115]. In Europe, the Netherlands has among the most restricted antibiotic

stewardship, with nearly 50% fewer antibiotics prescribed in the community/primary care sec-

tor (10.06 DDD/1000 inhabitants/d) than in the UK (19.09), in 2017 (https://ecdc.europa.eu/

en/antimicrobial-consumption/database/country-overview). Macrolide prescribing in the

Netherlands (1.38 DDD/1000/d) was only 47% that of the UK (2.90 DDD/1000/d). The extent

to which the Netherlands still overprescribes and misprescribes macrolides would be highly

instructive in defining safe limits for further reductions in macrolide prescribing. Notably, the

UK has a lower fluoroquinolone prescribing rate in the community (0.44 DDD/1000/d) as

compared to the Netherlands (0.75). Hence, there are important lessons to be mutually shared

across Europe and more widely on how to optimise antibiotic prescribing—a point not lost on

the Advisory Committee on Antimicrobial Prescribing, Resistance and Healthcare Associated

Infection [116] and Public Health England [117].

The UK has reported between 8.8% and 23.1% of all systemic antibiotic prescriptions in

English primary care as inappropriate, with some high prescribing practices in England capa-

ble of reducing antibiotic prescriptions by as much as 52.9% [117]. In a linked study where the

authors and an expert panel explored the ‘appropriateness’ of antibiotic prescription, the

authors found that substantially higher proportions of patients received antibiotics than was

deemed ‘appropriate’, with the respiratory ailments showing the largest contrast between

actual and ideal: acute cough (41% vs 10%, respectively), bronchitis (82%:13%); sore throat

(59%:13%); rhinosinusitis (88%:11%); and acute otitis media in 2- to 18-year-olds (92%:17%)

[118]. Such a reduction in prescribing will be beneficial to reducing resistance selection in

humans, but, as shown in this paper, might not go far enough (Table 9).

Table 9. Summary of the modelled impact of antibiotic prescribing on antibiotic resistance gene selection in sew-

age-impacted freshwater.

Scenarios Macrolide Fluoroquinolone

% of modelled catchment length >PNEC

Antibiotic prescribing from 2015/16 64 74

4% Reduction on 2015/16 59 73

20% Reduction on 2015/16 54 68

% reduction in prescribing required to achieve the target

�90% of catchment <PNEC 77 85

https://doi.org/10.1371/journal.pone.0221568.t009
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Mitigation through innovation and investment in STPs. A step-change in the way we

currently handle our wastewater in needed to tackle the challenge of antibiotic and DNA pol-

lution. One option is to set emission limits on the concentration of antibiotics, in much the

same way the pharmaceutical industry has voluntarily adopted for its manufacturing supply

chain [65]. The setting of strict antibiotic emissions limits will have the desired effect of greatly

reducing the environmental impact of antibiotics, with, arguably, several serendipitous impli-

cations for other chemical hazards. For example, any technological solution for the treatment

of wastewater that is effective in removing a wide range of antibiotics will also likely reduce the

load of estrogens and estrogen-mimicking chemicals which has been a growing environmental

concern for several decades [119–121]. As such, it is entirely likely that the substantial cost

associated with tackling estrogens and estrogen-mimicking chemicals [122] can be shared

with the challenge of reducing AMR in the environment.

Moreover, there is a rapidly growing list of chemicals that are found within sewage effluent

that has been shown to select or co-select for ARGs, i.e., antiepileptics [106], biocides/disinfec-

tants [123,124], metals [125]. Hence, engineering solutions to antibiotic removal from waste-

water can spread the cost across a very wide range of pollutants, thereby alleviating a

substantial range of ecotoxicological hazards, in addition to resistance selection. Spreading the

mitigation costs across a range of challenges might also be more politically and socially tracta-

ble, owing to the significant cost associated with improving our treatment of wastewater.

It is relevant to highlight that any engineering solutions employed for the removal of antibi-

otics from sewage effluent might be ineffective in reducing the DNA pollution from antibiotic-

resistant bacteria. Co-development of engineering solutions to tackle the chemical and biologi-

cal drivers of ARGs in the environment is required to reduce the environmental pressure

caused by our wastewater. In addition, the by-products of STP, sludge, which contains antibi-

otic resistance, antibiotics and non-antibiotic chemical drivers of resistance are currently

amended to land, representing additional risks to humans and the environment [66], but are

out of the study’s scope.

Conclusion

This study explores the reduction in macrolide and fluoroquinolone prescribing needed to

alleviate the modelled hazard from antibiotic resistance selection in sewage-impacted rivers. It

is unclear if the projected reductions in antibiotic prescriptions of 77 to 85% could be achieved

solely through reduced prescribing by the NHS. Moreover, it remains unexplored whether,

ethically, it should be met through changes in prescribing. Arguably, environmental targets

could be more readily achieved by a holistic, integrated AMR action plan, which constrains

and optimises antibiotic prescribing, while also addressing the chronic release of antimicrobi-

als, biocides, metals and resistance genes from STP effluent.
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