164 research outputs found
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
The benefits of implementing negative emission technologies in the global warming response to cumulative carbon emissions until the year 2420 are assessed following the shared socioeconomic pathway (SSP) 1-2.6, the sustainable development scenario, with a comprehensive set of intermediate-complexity Earth system model integrations. Model integrations include 86 different model realisations covering a wide range of plausible climate states. The global warming response is assessed in terms of two key climate metrics: the effective transient climate response to cumulative CO2 emissions (eTCRE), measuring the surface warming response to cumulative carbon emissions and associated non-CO2 forcing, and the effective zero emissions commitment (eZEC), measuring the extent of any continued warming after net-zero CO2 emissions are reached. The transient climate response to cumulative CO2 emissions (TCRE) is estimated as 2.2 K EgC−1 (median value) with a 10 %–90 % range of 1.75 to 3.13 K EgC−1 in 2100, approximated from the eTCRE by removing the contribution of non-CO2 forcing. During the positive emission phase, the eTCRE decreases from 2.71 (2.0 to 3.65) to 2.61 (1.91 to 3.62) K EgC−1 due to a weakening in the dependence of radiative forcing on atmospheric carbon, which is partly opposed by an increasing fraction of the radiative forcing warming the surface as the ocean stratifies. During the net negative and zero emission phases, a progressive reduction in the eTCRE to 2.0 (1.39 to 2.96) K EgC−1 is driven by the reducing airborne fraction as atmospheric CO2 is drawn down mainly by the ocean. The model uncertainty in the slopes of warming versus cumulative CO2 emissions varies from being controlled by the radiative feedback parameter during positive emissions to being affected by carbon-cycle parameters during net negative emissions, consistent with the drivers of uncertainty diagnosed from the coefficient of variation of the contributions in the eTCRE framework. The continued warming after CO2 emissions cease and remain at zero gives a model mean eZEC of −0.03 K after 25 years, which decreases in time to −0.21 K at 90 years after emissions cease. However, there is a spread in the ensemble with a temperature overshoot occurring in 20 % of the ensemble members at 25 years after cessation of emissions. If net negative emissions are included, there is a reduction in atmospheric CO2 and there is a decrease in temperature overshoot so that the eZEC is positive in only 5 % of the ensemble members. Hence, incorporating negative emissions enhances the ability to meet climate targets and avoid risk of continued warming after net zero is reached
Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone
BACKGROUND
New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype.
AIM
To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England.
METHODS
Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains.
FINDINGS
By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006.
CONCLUSIONS
Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms
On the growth of perturbations in interacting dark energy and dark matter fluids
The covariant generalizations of the background dark sector coupling
suggested in G. Mangano, G. Miele and V. Pettorino, Mod. Phys. Lett. A 18, 831
(2003) are considered. The evolution of perturbations is studied with detailed
attention to interaction rate that is proportional to the product of dark
matter and dark energy densities. It is shown that some classes of models with
coupling of this type do not suffer from early time instabilities in strong
coupling regime.Comment: 11 pages, 2 figures. v3: minor changes, typos fixe
A deficit of high-redshift, high-luminosity X-ray clusters: Evidence for a high value of Ωm?
From the Press-Schechter mass function and the empirical X-ray cluster luminosity-temperature (L-T) relation, we construct an X-ray cluster luminosity function that can be applied to the growing number of high-redshift, X-ray cluster luminosity catalogs to constrain cosmological parameters. In this paper, we apply this luminosity function to the Einstein Medium Sensitivity Survey (EMSS) and the ROSAT Brightest Cluster Sample (BCS) luminosity function to constrain the value of Ωm. In the case of the EMSS, we find a factor of 4-5 fewer X-ray clusters at redshifts above z = 0.4 than below this redshift at luminosities above LX = 7 × 1044 ergs s-1 (0.3-3.5 keV), which suggests that the X-ray cluster luminosity function has evolved above L(Black star). At lower luminosities, this luminosity function evolves only minimally, if at all. Using Bayesian inference, we find that the degree of evolution at high luminosities suggests that Ωm = 0.96+0.36-0.32, given the best-fit L-T relation of Reichart, Castander, & Nichol. When we account for the uncertainty in how the empirical L-T relation evolves with redshift, we find that Ωm ≈ 1.0 ± 0.4. However, it is unclear to what degree systematic effects may affect this and similarly obtained results
Dilatonic Interpretation of the Quintessence?
We discuss the possibility that "quintessential effects", recently displayed
by large scale observations, may be consistently described in the context of
the low-energy string effective action, and we suggest a possible approach to
the problem of the cosmic coincidence based on the link between the strength of
the dilaton couplings and the cosmological state of our Universe.Comment: 6 pages, Revtex, four figures included using epsfig. To appear in
Phys. Rev.
Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91
This paper is a research output of DMW-Creep project which is part of a national UK programme through the RCUK Energy programme and India's Department of Atomic Energy. The research is focussed on understanding the characteristics of welded joints between austenitic stainless steel and ferritic steel that are widely used in many nuclear power generating plants and petrochemical industries as well as conventional coal and gas-fired power systems. The members of the DMW-Creep project have under- taken parallel round robin activities measuring the residual stresses generated by a dissimilar metal weld (DMW) between AISI 316L(N) austenitic stainless steel and P91 ferritic-martensitic steel. Electron beam (EB) welding was employed to produce a single bead weld on a plate specimen and an additional smoothing pass (known cosmetic pass) was then introduced using a defocused beam. The welding re- sidual stresses have been measured by five experimental methods including (I) neutron diffraction (ND), (II) X-Ray diffraction (XRD), (III) contour method (CM), (IV) incremental deep hole drilling (iDHD) and (V) incremental centre hole drilling (iCHD). The round robin measurements of weld residual stresses are compared in order to characterise surface and sub-surface residual stresses comprehensively
Variable Modified Chaplygin Gas in Anisotropic Universe with Kaluza-Klein Metric
In this work, we have consider Kaluza-Klein Cosmology for anisotropic
universe where the universe is filled with variable modified chaplygin gas
(VMCG). Here we find normal scalar field and the self interacting
potential to describe the VMCG Cosmology. Also we graphically
analyzed the geometrical parameters named {\it statefinder parameters} in
anisotropic Kaluza-Klein model. Next, we consider a Kaluza-Klein model of
interacting VMCG with dark matter in the Einstein gravity framework. Here we
construct the three dimensional autonomous dynamical system of equations for
this interacting model with the assumption that the dark energy and the dark
matter are interact between them and for that we also choose the interaction
term. We convert that interaction terms to its dimensionless form and perform
stability analysis and solve them numerically. We obtain a stable scaling
solution of the equations in Kaluza-Klein model and graphically represent
solutions.Comment: 11 pages, 13 figure
Quintessence arising from exponential potentials
We demonstrate how exponential potentials that could arise in the early
Universe as a result of Kaluza-Klein type compactifications of string theory,
can lead to cosmological solutions which correspond to the currently observed
accelerating Universe. The idea is simple, relying solely on the known scaling
properties associated with exponential potentials. In particular we show that
the existence of stable attractor solutions implies that the results hold for a
wide range of coupling constants and initial conditions.Comment: 4 pages, 3 figures, published versio
Immersive multi-user decision training games with ARLearn
Serious gaming approaches so far focus mainly on skill development, motivational aspects or providing immersive learning situations. Little work has been reported to foster awareness and decision competencies in complex deci-sion situations involving incomplete information and multiple stakeholders. We address this issue exploring the technical requirements and possibilities to de-sign games for such situations in three case studies: a hostage taking situation, a multi-stakeholder logistics case, and a health-care related emergency case. To implement the games, we use a multi-user enabled mobile game development platform (ARLearn). We describe the underlying real world situations and edu-cational challenges and analyse how these are reflected in the ARLearn games realized. Based on these cases we propose a way to increase the immersiveness of mobile learning games.SALOM
The long-term fate of permafrost peatlands under rapid climate warming
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms
- …