18 research outputs found

    Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion

    Get PDF
    The alignment of brain imaging data for functional neuroimaging studies is challenging due to the discrepancy between correspondence of morphology, and equivalence of functional role. In this paper we map functional activation areas across individuals by a multi-atlas label fusion algorithm in a functional space. We learn the manifold of resting-state fMRI signals in each individual, and perform manifold alignment in an embedding space. We then transfer activation predictions from a source population to a target subject via multi-atlas label fusion. The cost function is derived from the aligned manifolds, so that the resulting correspondences are derived based on the similarity of intrinsic connectivity architecture. Experiments show that the resulting label fusion predicts activation evoked by various experiment conditions with higher accuracy than relying on morphological alignment. Interestingly, the distribution of this gain is distributed heterogeneously across the cortex, and across tasks. This offers insights into the relationship between intrinsic connectivity, morphology and task activation. Practically, the mechanism can serve as prior, and provides an avenue to infer task-related activation in individuals for whom only resting data is available. Keywords: Functional Connectivity, Cortical Surface, Task Activation, Target Subject, Intrinsic ConnectivityCongressionally Directed Medical Research Programs (U.S.) (Grant PT100120)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (R01HD067312)Neuroimaging Analysis Center (U.S.) (P41EB015902)Oesterreichische Nationalbank (14812)Oesterreichische Nationalbank (15929)Seventh Framework Programme (European Commission) (FP7 2012-PIEF-GA-33003

    Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays

    Full text link
    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we have measured ratios of branching fractions for the two-body singly-Cabibbo-suppressed charged decays of the D0: (D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003, (D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and (D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and pi+pi-, and have measured the CP asymmetry parameters A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.

    Search for Rare and Forbidden Dilepton Decays of the D+, Ds, and D0 Charmed Mesons

    Full text link
    We report the results of a search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D+, Ds, and D0 mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, we examine the pi,l,l and K,l,l decay modes of D+ and Ds and the l+l- decay modes of D0. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.Comment: 12 pages, 3 figures, LaTeX, elsart.cls, epsf.sty, amsmath.sty Submitted to Physics Letters

    Search for CP Violation in Charged D Meson Decays

    Full text link
    We report results of a search for CP violation in the singly Cabibbo-suppressed decays D+ -> K- K+ pi+, phi pi+, K*(892)0 K+, and pi- pi+ pi+ based on data from the charm hadroproduction experiment E791 at Fermilab. We search for a difference in the D+ and D- decay rates for each of the final states. No evidence for a difference is seen. The decay rate asymmetry parameters A(CP), defined as the difference in the D+ and D- decay rates divided by the sum of the decay rates, are measured to be: A(CP)(K K pi) = -0.014 +/- 0.029, A(CP)(phi pi) = -0.028 +/- 0.036, A(CP)(K*(892) K) = -0.010 +/- 0.050, and A(CP)(pi pi pi) = -0.017 +/- 0.042.Comment: 13 pages, 5 figures, 1 table; Elsevier LaTe

    Measurement of the form-factor ratios for D+ --> K* l nu

    Full text link
    The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm hadroproduction experiment E791 at Fermilab. From 3034 (595) signal (background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09, r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33 +-0.29. The values of the form factor ratios rv and r2 measured for the muon channel are combined with the values of rv and r2 that we have measured in the electron channel. The combined E791 results for the muon and electron channels are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL

    Asymmetries between the production of D+ and D- mesons from 500 GeV/c pi- nucleon interactions as a function of xF and pt**2

    Full text link
    We present asymmetries between the production of D+ and D- mesons in Fermilab experiment E791 as a function of xF and pt**2. The data used here consist of 74,000 fully-reconstructed charmed mesons produced by a 500 GeV/c pi- beam on C and Pt foils. The measurements are compared to results of models which predict differences between the production of heavy-quark mesons that have a light quark in common with the beam (leading particles) and those that do not (non-leading particles). While the default models do not agree with our data, we can reach agreement with one of them, PYTHIA, by making a limited number of changes to parameters used

    Differential cross sections, charge production asymmetry, and spin-density matrix elements for D*(2010) produced in 500 GeV/c pi^- nucleon interactions

    Full text link
    We report differential cross sections for the production of D*(2010) produced in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also report the D* +/- charge asymmetry and spin-density matrix elements as functions of these variables. Investigation of the spin-density matrix elements shows no evidence of polarization. The average values of the spin alignment are \eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles, respectively.Comment: LaTeX2e (elsart.cls). 13 pages, 6 figures (eps files). Submitted to Physics Letters

    Mass Splitting and Production of Σc0\Sigma_c^0 and Σc++\Sigma_c^{++} Measured in 500GeV500 {GeV} π−−\pi^- -N Interactions

    Full text link
    From a sample of 2722±782722 \pm 78 Λc+\Lambda_c^+ decaying to the pK−π+pK^-\pi^+ final state, we have observed, in the hadroproduction experiment E791 at Fermilab, 143±20143 \pm 20 Σc0\Sigma_c^0 and 122±18122 \pm 18 Σc++\Sigma_c^{++} through their decays to Λc+π±\Lambda_c^+ \pi^{\pm}. The mass difference M(Σc0)−M(Λc+M(\Sigma_c^0) - M(\Lambda_c^+) is measured to be (167.38±0.29±0.15)MeV(167.38\pm 0.29\pm 0.15) {MeV}; for M(Σc++)−M(Λc+)M(\Sigma_c^{++}) - M(\Lambda_c^+), we find (167.76±0.29±0.15)MeV(167.76\pm 0.29\pm0.15) {MeV}. The rate of Λc+\Lambda_c^+ production from decays of the Σc\Sigma_c triplet is (22\pm 2\pm 3) {%} of the total Λc+\Lambda_c^+ production assuming equal rate of production from all three, as measured for Σc0\Sigma_c^0 and Σc++\Sigma_c^{++}. We do not observe a statistically significant Σc\Sigma_c baryon-antibaryon production asymmetry. The xFx_F and pt2p_t^2 spectra of Λc+\Lambda_c^+ from Σc\Sigma_c decays are observed to be similar to those for all Λc+\Lambda_c^+'s produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed fil

    The doubly Cabibbo-suppressed decay D+→K+π−π+D^+\to K^+ \pi^- \pi^+

    Full text link
    We report the observation of the doubly Cabibbo-suppressed decay D+→K+π−π+D^+\to K^+ \pi^- \pi^+ in data from Fermilab charm hadroproduction experiment E791. With a signal of 59 \pm 13 events we measured the ratio of the branching fraction for this mode to that of the Cabibbo-favored decay D+→K−π+π+D^+\to K^- \pi^+ \pi^+ to be B(D+→K+π−π+)/B(D+→K−π+π+)=(7.7±1.7±0.8)×10−3B(D^+ \to K^+ \pi^- \pi^+) / B(D^+ \to K^- \pi^+ \pi^+) = (7.7 \pm 1.7 \pm 0.8) \times 10^{-3}. A Dalitz plot analysis was performed to search for resonant structures.Comment: 10 pages, 5 eps figures, RevTe
    corecore