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Abstract

The alignment of brain imaging data for functional neuroimaging studies is challenging due to the 

discrepancy between correspondence of morphology, and equivalence of functional role. In this 

paper we map functional activation areas across individuals by a multi-atlas label fusion algorithm 

in a functional space. We learn the manifold of resting-state fMRI signals in each individual, and 

perform manifold alignment in an embedding space. We then transfer activation predictions from 

a source population to a target subject via multi-atlas label fusion. The cost function is derived 

from the aligned manifolds, so that the resulting correspondences are derived based on the 

similarity of intrinsic connectivity architecture. Experiments show that the resulting label fusion 

predicts activation evoked by various experiment conditions with higher accuracy than relying on 

morphological alignment. Interestingly, the distribution of this gain is distributed heterogeneously 

across the cortex, and across tasks. This offers insights into the relationship between intrinsic 

connectivity, morphology and task activation. Practically, the mechanism can serve as prior, and 

provides an avenue to infer task-related activation in individuals for whom only resting data is 

available.

1 Introduction

Establishing functional correspondence across the brains of individuals is a central 

prerequisite for neuroimaging group studies. Standard approaches rely on brain morphology 

to perform group-wise registration, and their improvement has brought a substantial boost to 

the specificity of neuroimaging results and their interpretation in light of neuroscientific 

questions. Recent results indicate that the variability of the functional architecture across 

individuals makes the concept of correspondence more challenging to grasp. Specifically, 

the link between anatomical location and functional role can be weak. This results in the 

decrease of specificity in group studies, and potential bias. In this paper we propose multi-

atlas label fusion based on functional alignment. The method establishes correspondence of 

cortical positions based on resting-state functional magnetic resonance imaging (rs-fMRI) 

signals. Using this functional alignment with label-fusion of activations observed during 

task fMRI (t-fMRI) in a population of source subjects, we predict task activations in a target, 

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 
October 01.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2015 October ; 9350: 313–320. doi:
10.1007/978-3-319-24571-3_38.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/157613313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aligned subject. Transferring information using functional connectivity alignment results in 

higher accuracy of transferring task activation compared to morphological alignment. This 

method extends functional region based analyses [2] to functional networks.

Alignment of function across individuals

Neuroimaging group-studies typically rely on registering structural imaging data of all 

subjects to a common template using software such as FreeSurfer [5], FSL [8], or SPM [1]. 

This establishes spatial correspondence across the population, and allows for local 

comparison of activation, or connectivity. However, function exhibits a high degree of 

variability [12] and is not necessarily tightly linked to anatomy [2]. Approaches to match 

function across individuals beyond relying on anatomy have been proposed before. In [14] 

the cortical surfaces were aligned by maximizing the correlation among fMRI signals 

recorded in different subjects during watching synchronized movies. A common space 

representing visual stimulus responses was used to establish correspondence across 

individuals in [7]. In [10] a joint manifold representing the functional connectivity patterns 

recorded during language experiments in multiple individuals was used to align function 

across subjects independent of the anatomical anchors of functional units. Instead of using 

across-subject correlation, it relies on the within-subject correlation patterns to match shared 

network architecture across the population.

Contribution

In this paper we extend the functional connectivity alignment proposed in [10] to “resting 

state” data and multi-atlas label fusion. First, we establish correspondence between cortical 

surface points across individuals by functional connectivity alignment. Then, we predict task 

activations in a target subject, by evaluating the similarity of the matched embedding maps 

of all source subjects, and the target. Finally, we transfer predictions by selecting the most 

similar subject on a voxel-by-voxel basis. In the absence of any ground truth on functional 

connectivity, evaluating task-based correspondence by measuring the Dice coefficient 

between predicted and actual task-based activation provides an objective way to evaluate the 

alignment. The proposed approach can cope with variability, since it selects the most similar 

individual in the source population, based on functional connectivity, for activation label 

prediction. Furthermore, we can use it to study and compare the discrepancy between 

functional transfer of activation areas, and morphological transfer across the cortex. Finally, 

we gain insights into the relationship between the embedding structure, and the 

correspondence across the cortex.

Related work

The work is closely linked to surface matching algorithms based on curvature [11]. 

However, instead of relying on morphological features, we inject functional information to 

map similarity across the cortex. Multi-atlas label fusion transfers information such as labels 

from a set of atlases to target data. Instead of building a single model from the atlas 

population, it first fits all atlas templates to the target data. Then it transfers labels from 

atlases, or groups of atlases to the target based on a similarity function that reflects the 

suitability of an atlas for predicting the labeling of the target [15,9,18]. Reducing the 

dimensionality of data can capture underlying structure that is not apparant in its native 
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space. It can be achieved through linear models (e.g., PCA [13], ICA [3]) or using non-

linear embedding approaches. The latter assume that the data of interest lives on a low 

dimensional nonlinear manifold and estimate its intrinsic coordinate structure by embedding 

the data.

2 Method

The proposed method first performs embedding of individual resting state functional 

connectivity graphs. The embedding maps are aligned and labels are transferred from a 

source population to a target individual based on their fit in the embedding space after 

alignment in a multi-atlas label fusion approach.

Embedding the Intrinsic Connectivity Structure of rs-fMRI Data

We view an fMRI sequence I ∈ ℝT×N as a graph of N voxels (or cortical surface vertices). 

Each voxel (vertex) vi carries an fMRI signal over T time points. We calculate a pairwise 

similarity matrix W ∈ ℝ+N×N that assigns the correlation W(i, j) of the time-courses to each 

pair of voxels (i, j) (edge) [4]. Following [4] this graph defines a Markov chain with 

transition matrix , where D is a diagonal normalization matrix such that 

 is the strength of node i. The eigenvectors of the transition matrix 

scaled by their eigenvalues (λt) define an embedding that results in a representation of each 

voxel as a point in the embedding space: i ↦ Φi [10] (where t is the diffusion time 

parameter). To capture positive and negative correlations and to create an affinity matrix, the 

correlation matrix was scaled between 0 and 1 and then converted to a sparse graph 

representation (A) using a nearest neighbor approach. The 100 closest neighbors of each 

vertex were retained. The graph was checked to ensure that it was a connected graph. The 

diffusion map embedding was then computed on the normalized Laplacian of this graph. 

The eigenvalues λ are divided by 1−λ. The division of the λ parameter provides noise 

robustness and allows variation from the standard form potentially eliminating the use of the 

diffusion time (t) parameter. In many empirically tested cases, where the embedding is 

known, setting t = 0 returns a result that is close to using the optimal diffusion time 

parameter. Given that the optimal solution is generally unknown, setting (t = 0) is often a 

practical choice. The resulting embedding is a lower dimensional representation of the 

intrinsic functional connectivity of the brain.

Aligning Embeddings

For a target IT and each source , we find a orthonormal alignment via Procrustes analysis 

[16]: QS,T. Given target-  and source embedding coordinates 

, where U and V are constructed via the singular value 

decomposition . See [10] for detailed description of the 

approach. Figure 1 shows each of the first 5 individual components of the average 

embedding from 40 participants and the same components from 3 individual participants 

(we enlarge one for better visibility in the bottom row). We hypothesise that these 
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components form an intrinsic functional basis of brain activity and show aligned embedding 

coordinates on the cortical surface. The coefficients of the first 5 eigenvectors projected to 

the surface after functional alignment in the embedding space mark comparable systems on 

the cortex. Their fine-grained cortical distribution varies across individuals. The proposed 

label transfer is based on the assumption that activation can be transferred among 

individuals with similar cortical functional eigenvector profiles.

Predicting Activation

The proposed multi-atlas label fusion method chooses source subjects for the prediction of 

activation on each cortical vertex based on how similar those eigenvector coefficients 

(Figure 1) are at the vertex location. That is, we select source subjects based on how similar 

their resting-state connectivity aligns with the target subject connectivity. The alignment in 

the embedding space enables a straight-forward calculation of this similarity. Specifically, 

we predict activation maps in a target subject based on the known activation in a set of 

source subjects. We know the activation  of each voxel  in each source volume s. 

Given the target embedding ΦT and all aligned source embeddings  for each voxel (or 

surface vertex) we calculate a score by the Euclidean distance between the target point 

and the anatomically corresponding source point  in the embedding space: 

. Then the predictor for the activation  at voxel  is

(1)

We compare this prediction guided by the functional alignment to two alternatives that are 

based solely on the anatomical position. As a first comparison, we predict 

, i.e., the average activation f at the anatomically 

corresponding positions in the source subjects. Secondly, we predict , 

where s is chosen randomly. For the evaluation, we average this prediction-accuracy over all 

individuals.

3 Experiments

Data

We used data from 40 randomly selected participants from the Human Connectome Project 

(HCP; [17]) 500-Subject data release. For each participant, we used the data from one of the 

preprocessed functional runs [6] together with FIX cleanup. For each rs-fMRI run, data 

projected onto the average cortical surface (59412 vertices × 1200 timepoints) were used to 

construct a correlation matrix (59412 × 59412). This matrix is the basis for the embedding 

and functional alignment. We used task fMRI data of 7 paradigms from the same 

participants (motor, language, working memory, social, gambling relational, emotion). For 

each paradigm we used z-score maps calculated for each contrast within each paradigm. We 

evaluated the accuracy of the activation prediction by leave-one-out cross validation across 
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40 subjects. During each prediction by label fusion, we chose one contrast, and predicted the 

Z-score on a hold-out target subject. The prediction was performed by label-fusion from the 

Z-scores of the remaining source subjects. We calculated the Dice coefficient between 

predicted-, and actual activation region in the target subject using a Z-score cutoff of Z > 

3.09, corresponding to p < 0.001 as a marker for activation region.

Impact of Embedding Parameters

To evaluate the effect of embedding parameters of the diffusion map embedding, on the 

prediction accuracy, two of the embedding parameters were varied: diffusion time was set to 

0 and 5, while the number of nearest neighbors was varied across 50, 100, and 500. In our 

experiments, these parameters had a minimal effect on the Dice coefficients, with variations 

(σ > 0.01) being observed only at values of Z > 5 for the emotion and gambling tasks.

Comparison of Prediction Accuracy

We compare the proposed label-fusion with functional alignment based prediction with an 

approach that does not take the functional rs-fMRI information into account. Figure 2 

provides an overview of prediction accuracy with functional alignment label-fusion versus 

the average accuracy when predicting the activation based on the anatomical position. Each 

row corresponds to one of 7 paradigms, and each column to one of the contrasts in these 

paradigms. We only show the first 6 contrasts for each paradigm. Label-fusion that takes the 

distance in the functional embedding map into account when choosing a source subject for 

each vertex, consistently yields higher accuracy than uninformed transfer. We observe 

similar differences when comparing the label-fusion with prediction based on the average Z-

score in the population. Note that the proposed approach primarily improves accuracy, if the 

anatomical mapping accuracy is poor. Figure 3 provides a detailed comparison for 4 

illustrative paradigms, and a range of Z-score cut-off values. The plots show the ratio 

between the proposed alignment accuracy and the two morphology based comparison 

methods. Values higher than 1 mean that label-fusion accuracy is higher. Results show that 

the improvement varies across paradigms and Z-score cut-offs, but that the majority of 

contrasts exhibit improvement for the proposed label-fusion.

The Heterogeneous Distribution of the Impact across the Cortex

Is the advantage of the functional alignment label-fusion clustered in certain areas? Figure 4 

shows the average ratio between prediction accuracy (Dice of p < 0.001 areas) of the 

proposed approach and anatomical alignment mapped to the cortical surface. We only 

provide values in those areas where the 7 available paradigms exhibit any activation (we 

chose a more liberal p < 0.01 to allow for estimates of this ratio in larger areas). The ratio is 

different across the cortex, and exhibits strong symmetry across the two hemispheres. Areas 

such as motor cortex, and visual cortex show little improvement by functional alignment, 

indicating that the location of function varies little across the population. In contrast 

specifically those areas close to language network, and temporal regions exhibit the most 

gain.
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4 Conclusion

In this paper we propose the prediction of the areas active during a task response in a target 

subject by multi-atlas label fusion from a source population based on functional alignment. 

The label-fusion algorithm selects predictors for the Z-score in a target subject among the Z-

score at the corresponding position in a population of source subjects. The selection is based 

on the fit between the aligned target and the source in the embedding space, and extends the 

rationale behind alignment across individuals using functional regions to functional 

networks. The embedding represents the functional connectivity observed during rs-fMRI. 

Results suggest that the resting-state functional connectivity structure is a reliable basis to 

guide the mapping of task response activations across individuals. It highlights the strong 

link between the functional connectivity architecture of the brain, and the location of 

specific functional units that serve individual tasks. The distribution of this gain across the 

cortex enables insights into the locally varying link between morphology and function.
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Fig. 1. 
The first 5 components of an average embedding computed from the 40 participants and 

three individual embeddings. The differences across individuals reflect different spatial 

distributions of resting state functional networks. We use the similarity of these surface 

markers to (locally) select the best source subjects during prediction by label fusion.

Langs et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Improvement of accuracy by functional alignment label-fusion over anatomical alignment 

varies across different experiment conditions. For 7 tasks, we show the prediction accuracy 

for the first 6 contrasts. On the right the actual individual activation and predictions based on 

functional multi-atlas fusion (green) is shown in comparison to prediction based on the 

average activation in the source subjects (blue).
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Fig. 3. 
Ratio between functional alignment label-fusion and predictions based on anatomy for 

example contrasts for 4 tasks: (1) averaged accuracy when transferring from random 

individuals (red, right scale), (2) transferring the average Z-score of the source population 

(blue, left scale).
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Fig. 4. 
Improvement by functional alignment label-fusion varies across the cortex. Only areas that 

are covered by at least one of the 7 paradigms with p < 0.01 are plotted.
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