7,339 research outputs found

    Method and apparatus for shaping and enhancing acoustical levitation forces

    Get PDF
    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described

    Prevalence of Rabbit Hemorrhagic Disease (RHD) in wild rabbits (Oryctolagus cuniculus) in Flanders, Belgium, 1999-2002

    Get PDF
    During the period of July 1999 through June 2002, carcasses of wild rabbits that had been shot or found dead and livers originating from wild rabbits that had been shot for consumption were collected in Flanders. One hundred and twelve carcasses were suitable for necropsy and histological and bacteriological analysis; histological analysis was possible in 41 livers. Considering the 112 rabbit carcasses only, Rabbit Hemorrhagic Disease (RHD) was found to be present in 33.9% of the cases. RHD was the most prevalent wild rabbit pathology detected in this study, before staphylococcosis (12.5%), and myxomatosis (10.7%). None of the liver samples from rabbits shot for consumption were positive for RHD. Of the 38 histologically RHD positive samples, 24 were analyzed with the hemagglutination (HA) technique, yielding 58.3% positive results. Seven samples that were histologically positive for RHD but HA negative were examined by transmission electron microscopy and were found positive for calicivirus. This proves that HA-negative RHD strains are circulating in the Flemish wild rabbit population

    Observations of the Crab Nebula with H.E.S.S. Phase II

    Full text link
    The High Energy Stereoscopic System (H.E.S.S.) phase I instrument was an array of four 100 m2100\,\mathrm{m}^2 mirror area Imaging Atmospheric Cherenkov Telescopes (IACTs) that has very successfully mapped the sky at photon energies above ∌100 \sim 100\,GeV. Recently, a 600 m2600\,\mathrm{m}^2 telescope was added to the centre of the existing array, which can be operated either in standalone mode or jointly with the four smaller telescopes. The large telescope lowers the energy threshold for gamma-ray observations to several tens of GeV, making the array sensitive at energies where the Fermi-LAT instrument runs out of statistics. At the same time, the new telescope makes the H.E.S.S. phase II instrument. This is the first hybrid IACT array, as it operates telescopes of different size (and hence different trigger rates) and different field of view. In this contribution we present results of H.E.S.S. phase II observations of the Crab Nebula, compare them to earlier observations, and evaluate the performance of the new instrument with Monte Carlo simulations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    Electrowetting of liquid marbles

    Get PDF
    Electrowetting of water drops on structured superhydrophobic surfaces are known to cause an irreversible change from a slippy (Cassie-Baxter) to a sticky (Wenzel) regime. An alternative approach to using a water drop on a superhydrophobic surface to obtain a non-wetting system is to use a liquid marble on a smooth solid substrate. A liquid marble is a droplet coated in hydrophobic grains, which therefore carries its own solid surface structure as a conformal coating. Such droplets can be considered as perfect non-wetting systems having contact angles to smooth solid substrates of close to 180 degrees. In this work we report the electrowetting of liquid marbles made of water coated with hydrophobic lycopodium grains and show that the electrowetting is completely reversible. Marbles are shown to return to their initial contact angle for both ac and dc electrowetting and without requiring a threshold voltage to be exceeded. Furthermore, we provide a proof-of-principle demonstration that controlled motion of marbles on a finger electrode structure is possible

    Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A

    Get PDF
    We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2°.2 away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV γ-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the γ-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and γ-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed γ-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power

    On virialization with dark energy

    Full text link
    We review the inclusion of dark energy into the formalism of spherical collapse, and the virialization of a two-component system, made of matter and dark energy. We compare two approaches in previous studies. The first assumes that only the matter component virializes, e.g. as in the case of a classic cosmological constant. The second approach allows the full system to virialize as a whole. We show that the two approaches give fundamentally different results for the final state of the system. This might be a signature discriminating between the classic cosmological constant which cannot virialize and a dynamical dark energy mimicking a cosmological constant. This signature is independent of the measured value of the equation of state. An additional issue which we address is energy non-conservation of the system, which originates from the homogeneity assumption for the dark energy. We propose a way to take this energy loss into account.Comment: 15 pages, 5 figures. Accepted for publication in JCA

    Constraining the cosmic-ray pressure in the inner Virgo Cluster using H.E.S.S. observations of M 87

    Get PDF
    The origin of the gamma-ray emission from M 87 is currently a matter of debate. This work aims to localize the very high-energy (VHE; 100 GeV -- 100 TeV) gamma-ray emission from M 87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M 87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intracluster medium and allow us to investigate the role of cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. The High Energy Stereoscopic System (H.E.S.S.) telescopes are sensitive to VHE gamma rays and have been used to observe M 87 since 2004. We utilized a Bayesian block analysis to identify M 87 emission states with H.E.S.S. observations from 2004 to 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended (≳1 kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120 h low-state data and find no significant gamma-ray extension. Therefore, we derive for the low state an upper limit of 58″(corresponding to 4.6kpc)intheextensionofasingle−componentmorphologicalmodeldescribedbyarotationallysymmetric2DGaussianmodelatthe99.74.6 kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at the 99.730 kpc) as the principal component of the VHE gamma-ray emission from the low state of M 87. The gamma-ray emission is compatible with a single emission region at the radio core of M 87. These results, with the help of two multiple-component models, constrain the maximum cosmic-ray to thermal pressure ratio to XCR, max. â‰Č 0.32 and the total energy in cosmic-ray protons to UCR â‰Č 5 1058ergintheinner20kpcoftheVirgoClusterforanassumedcosmic−rayprotonpower−lawdistributioninmomentumwithspectralindex 1058 erg in the inner 20 kpc of the Virgo Cluster for an assumed cosmic-ray proton power-law distribution in momentum with spectral index p = 2.1

    Prx1 and Prx2 in skeletogenesis: Roles in the craniofacial region, inner ear and limbs

    Get PDF

    Night Matters—Why the Interdisciplinary Field of “Night Studies” Is Needed

    Get PDF
    The night has historically been neglected in both disciplinary and interdisciplinary research. To some extent, this is not surprising, given the diurnal bias of human researchers and the difficulty of performing work at night. The night is, however, a critical element of biological, chemical, physical, and social systems on Earth. Moreover, research into social issues such as inequality, demographic changes, and the transition to a sustainable economy will be compromised if the night is not considered. Recent years, however, have seen a surge in research into the night. We argue that “night studies” is on the cusp of coming into its own as an interdisciplinary field, and that when it does, the field will consider questions that disciplinary researchers have not yet thought to ask

    On the Properties of Two Pulses Propagating Simultaneously in Different Dispersion Regimes in a Nonlinear Planar Waveguide

    Get PDF
    Properties of two pulses propagating simultaneously in different dispersion regimes, anomalous and normal, in a Kerr-type planar waveguide are studied in the framework of the nonlinear Schroedinger equation. Catastrophic self-focusing and spatio-temporal splitting of the pulses is investigated. For the limiting case when the dispersive term of the pulse propagating in the normal dispersion regime can be neglected an indication of a possibility of a stable self-trapped propagation of both pulses is obtained.Comment: 18 pages (including 15 eps figures
    • 

    corecore