1,958 research outputs found

    Communication Competence: A Commentary

    Get PDF
    There have been many attempts to identify communication competence by communication scholars. Many attempts in determining definitions have focused on action definitions (speaker-defined competence) and reaction definitions (listener defined competence). In agreeing that communication is transactional, communication competence should be held to the same standard. Communication competence must be viewed as a joint effort by all participants in a situation; not as solely dependent on the communicator or the listener). Public speaking evaluation forms attempt to measure communication competence of the speaker only. A recent attempt is The Competent Speaker Speech Evaluation Form (1992). This form identifies 8 competencies for the public speaker. These competencies offer the same problems to users that other forms have. These include: (1) the discrimination of the different levels of competence, (2) the subjective judgments from the teacher\u27s point of view to the audience as a whole, and (3) the cultural narrowness of the descriptions of the competencies

    Summary of Issues Discussed During the Seminar on the Introductory Course in Speech Communication, November 1990

    Get PDF
    The introductory course in communication has received considerable attention by scholars and practitioners in the past several years. Conventions, workshops and scholarly journals reflect the concerns of course directors, teachers and administrators in defining, operating and evaluating this course. Fourteen faculty convened at the SCA Annual Convention in San Francisco in November 1990 to identify and discuss the major issues relevant to directing and teaching the introductory course in communication. Five major issues were identified during the seminar. Discussion of the issues ranged from theoretical perspectives to specific action steps. This report is a summary of some of the major conclusions reached by the participants of the seminar

    Optimization Of Fuzzy Evapotranspiration Model Through Neural Training With Input–Output Examples

    Get PDF
    In a previous study, we demonstrated that fuzzy evapotranspiration (ET) models can achieve accurate estimation of daily ET comparable to the FAO Penman–Monteith equation, and showed the advantages of the fuzzy approach over other methods. The estimation accuracy of the fuzzy models, however, depended on the shape of the membership functions and the control rules built by trial–and–error methods. This paper shows how the trial and error drawback is eliminated with the application of a fuzzy–neural system, which combines the advantages of fuzzy logic (FL) and artificial neural networks (ANN). The strategy consisted of fusing the FL and ANN on a conceptual and structural basis. The neural component provided supervised learning capabilities for optimizing the membership functions and extracting fuzzy rules from a set of input–output examples selected to cover the data hyperspace of the sites evaluated. The model input parameters were solar irradiance, relative humidity, wind speed, and air temperature difference. The optimized model was applied to estimate reference ET using independent climatic data from the sites, and the estimates were compared with direct ET measurements from grass–covered lysimeters and estimations with the FAO Penman–Monteith equation. The model–estimated ET vs. lysimeter–measured ET gave a coefficient of determination (r2) value of 0.88 and a standard error of the estimate (Syx) of 0.48 mm d–1. For the same set of independent data, the FAO Penman–Monteith–estimated ET vs. lysimeter–measured ET gave an r2 value of 0.85 and an Syx value of 0.56 mm d–1. These results show that the optimized fuzzy–neural–model is reasonably accurate, and is comparable to the FAO Penman–Monteith equation. This approach can provide an easy and efficient means of tuning fuzzy ET models

    Magic Numbers for the Photoelectron Anisotropy in Li-Doped Dimethyl Ether Clusters

    Full text link
    Photoelectron velocity map imaging of Li(CH3_3OCH3_3)n_n clusters (1 ≤\leq n ≤\leq 175) is used to search for magic numbers related to the photoelectron anisotropy. Comparison with density functional calculations reveals magic numbers at n=4, 5, and 6, resulting from the symmetric charge distribution with high s-character of the highest occupied molecular orbital. Since each of these three cluster sizes correspond to the completion of a first coordination shell, they can be considered as 'isomeric motifs of the first coordination shell'. Differences in the photoelectron anisotropy, the vertical ionization energies and the enthalpies of vaporization between Li(CH3_3OCH3_3)n_n and Na(CH3_3OCH3_3)n_n can be rationalized in terms of differences in their solvation shells, atomic ionization energies, polarizabilities, metal-oxygen bonds, ligand-ligand interactions, and by cooperative effects

    Ocean Chlorophyll Studies from a U-2 Aircraft Platform

    Get PDF
    Chlorophyll gradient maps of large ocean areas were generated from U-2 ocean color scanner data obtained over test sites in the Pacific and Atlantic Oceans. The delineation of oceanic features using the upward radiant intensity relies on an analysis method which presupposes that radiation backscattered from the atmosphere and ocean surface can be properly modeled using a measurement made at 778 nm. An estimation of the chlorophyll concentration was performed by properly ratioing radiances measured at 472 nm and 548 nm after removing the atmospheric effects. The correlation between the remotely sensed data and in-situ surface chlorophyll measurements was validated in two sets of data. The results show that the correlation between the in-situ measured chlorophyll and the derived quantity is a negative exponential function and the correlation coefficient was calculated to be -0.965

    3D integrated superconducting qubits

    Get PDF
    As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1T_1, T2,echo>20 μT_{2,\rm{echo}} > 20\,\mus) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips

    Developmental and tissue-specific expression of NITRs

    Get PDF
    Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family

    Field Investigation of County Road Bases and Subgrades

    Get PDF
    This bulletin focuses on the investigation, sampling, and testing of in-place wearing surface materials, in-place base materials, and in-place subgrade materials in advance of paving. This is especially important the first time the road is to be blacktopped. However, the investigation and testing methods suggested herein are equally applicable to existing blacktop pavements needing reconstruction. The test methods focus on two quick field tests that have been developed through research to measure equivalent CBR values. CBR is a measure of the load-carrying capacity of base or subgrade materials. The methods and procedures set forth in this bulletin should go far in helping county road officials plan for a better, more efficient use of county highway construction funds

    Experimental Facilities Development

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
    • …
    corecore