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OPTIMIZATION OF FUZZY EVAPOTRANSPIRATION MODEL

THROUGH NEURAL TRAINING WITH 
INPUT–OUTPUT EXAMPLES

L. O. Odhiambo,  R. E. Yoder,  D. C. Yoder,  J. W. Hines

ABSTRACT. In a previous study, we demonstrated that fuzzy evapotranspiration (ET) models can achieve accurate estimation
of daily ET comparable to the FAO Penman–Monteith equation, and showed the advantages of the fuzzy approach over other
methods. The estimation accuracy of the fuzzy models, however, depended on the shape of the membership functions and the
control rules built by trial–and–error methods. This paper shows how the trial and error drawback is eliminated with the
application of a fuzzy–neural system, which combines the advantages of fuzzy logic (FL) and artificial neural networks (ANN).
The strategy consisted of fusing the FL and ANN on a conceptual and structural basis. The neural component provided
supervised learning capabilities for optimizing the membership functions and extracting fuzzy rules from a set of input–output
examples selected to cover the data hyperspace of the sites evaluated. The model input parameters were solar irradiance,
relative humidity, wind speed, and air temperature difference. The optimized model was applied to estimate reference ET using
independent climatic data from the sites, and the estimates were compared with direct ET measurements from grass–covered
lysimeters and estimations with the FAO Penman–Monteith equation. The model–estimated ET vs. lysimeter–measured ET
gave a coefficient of determination (r2) value of 0.88 and a standard error of the estimate (Syx) of 0.48 mm d–1. For the same
set of independent data, the FAO Penman–Monteith–estimated ET vs. lysimeter–measured ET gave an r2 value of 0.85 and
an Syx value of 0.56 mm d–1. These results show that the optimized fuzzy–neural–model is reasonably accurate, and is
comparable to the FAO Penman–Monteith equation. This approach can provide an easy and efficient means of tuning fuzzy
ET models.

Keywords. Evapotranspiration estimation, Fuzzy logic, Fuzzy–neural–model, Neural network.

vapotranspiration (ET) estimation models are used
to estimate ET from weather parameters owing to
the difficulty of obtaining accurate field measure-
ments. The FAO Penman–Monteith equation is

recommended as the standard method for computation of
daily reference ET (Allen et al., 1998). More recently, there
have been some attempts to model ET and/or evaporation
using fuzzy logic and neural network approaches. Fuzzy
systems acquire knowledge from domain experts, and this is
encoded within the algorithm in terms of the set of IF–THEN
rules. Fuzzy systems employ this rule–based approach and
interpolative  reasoning to respond to new inputs (Kaufmann
and Gupta, 1991; Eberhart et al., 1996; Tsoukalas and Uhrig,
1997). Some of the pioneering studies on daily ET estimation
using fuzzy logic include work by Clyma and Martin (1996),
who developed a method based on fuzzy principles to
forecast reference crop ET from forecasted weather informa-
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tion, and Ribeiro and Yoder (1997), who used fuzzy logic
concepts to develop a fuzzy ET estimator for an automated
irrigation control system. In a previous study (Odhiambo et
al., 2001), we examined the suitability of fuzzy logic for
estimating daily ET under different types of climatic
conditions. Two fuzzy ET Models, one using two input
weather parameters (daily solar irradiance, RS, and daily
average relative humidity, RH), and the other using three
input weather parameters (RS, RH, and daytime wind speed,
Ud), were developed and applied to estimate grass ET.
Independent weather parameters and measured ET from sites
representing arid and humid climates were used to test the
models. Comparison of the fuzzy–estimated ET values with
direct ET measurements from grass–covered weighing
lysimeters gave values for the standard error of the estimates
(Syx) in the range of 0.22 to 0.97 mm d–1, and coefficients of
determination  (r2) in the range of 0.72 to 0.90. The ET values
estimated using the fuzzy model with three input weather
parameters were comparable to the ET values estimated with
the FAO Penman–Monteith equation at all sites evaluated.
The fuzzy ET models performed better than the Hargreaves–
Samani equation (Hargreaves and Samani, 1985). The results
showed that fuzzy ET models could yield accurate estimation
of ET with simpler and fewer input parameters. However, at
low temperatures, both models tended to overestimate ET.
Another drawback of the fuzzy approach is that the
estimation accuracy depended on the shape of the member-
ship functions and the control rules built by trial–and–error
methods.

E
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This study is an extension of our previous work on estima-
tion of reference crop evapotranspiration using fuzzy state
models (Odhiambo et al., 2001). Here we present a method
of eliminating the reliance on the trial and error method to de-
sign the membership functions and control rules. Air temper-
ature difference was included as an additional input
parameter to resolve the problem of ET overestimation dur-
ing winter months. The strategy consisted of fusing the FL
and ANN on a conceptual and structural basis. The neural
component provided supervised learning capabilities for op-
timizing the membership functions and extracting control
rules from a set of input–output examples. The optimized
model was applied to estimate grass ET using climatic data
from different types of climates, and the results were
compared with direct ET measurements from grass–covered
lysimeters and estimations with the FAO Penman–Monteith
equation.

ESTIMATING ET USING NEURAL NETWORKS
In contrast to fuzzy logic, neural networks offer a highly

structured architecture, with learning and generalization ca-
pabilities that attempt to mimic the neurological mechanisms
of the brain. A neural network stores knowledge in a distrib-
uted manner within the connection weights between ele-
ments, which are determined by training (learning) with
known input–output examples. The generalization ability for
new inputs is based on the inherent algebraic structure of the
neural network (Rumelhart et al., 1986). A few studies that
use artificial neural networks to estimate ET and/or evapora-
tion have been reported in literature. Han and Felker (1997)
developed a neural network model to estimate daily soil wa-
ter evaporation from average air relative humidity (RH), air
temperature (T), wind speed (U), and soil water content. The
model achieved a good agreement between predicted and
measured values. The average absolute percentage error and
the root mean squared error were 21.0% and 0.17 mm d–1,
compared to 30.1% and 0.28 mm d–1 for a multiple linear re-
gression model. The neural network model appeared to per-
form better than the multiple linear regression technique in
estimating soil evaporation. Similarly, Tahir (1998) devel-
oped a neural network model to forecast monthly potential
evapotranspiration (ET). The model used relative humidity
(RH), solar irradiance (RS), temperature (T), and wind speed
(U) as input parameters. The results showed that the neural
network model was superior to the conventional methods of
estimation of potential evapotranspiration.

Bruton et al. (1998) developed an artificial neural network
(ANN) model of pan evaporation. The development was
based on various combinations of the following daily weather
data: rainfall, occurrence of rainfall, maximum temperature,
minimum temperature, average temperature, maximum rela-
tive humidity, average relative humidity, total solar radiation,
average wind speed, and calculated values for day length and
clear sky solar radiation. Elevation and latitude of the loca-
tion were also included in the data set. They found that an
ANN pan evaporation model with all the variables was the
most accurate, and gave a correlation coefficient of 0.72 and
root mean square error of 1.11 mm d–1 on the evaluation data
set. They also found that the ANN models of pan evaporation
were slightly more accurate than multiple linear regression
estimates of pan evaporation.

FUSION OF FUZZY AND NEURAL SYSTEMS
The foregoing review indicates that individual applica-

tions of FL and ANN were successful in modeling ET and/or
evaporation.  Although both FL and ANN approaches possess
remarkable properties when employed individually, there are
great advantages to using them in combination. For example,
combining FL and ANN endows the fuzzy system with neu-
ronal learning capabilities for the purpose of making them
more adaptive. At the same time, the FL also improves the
overall expressiveness and flexibility of the neural network.
Thus the aim of combining FL and ANN is to exploit their
complementary  nature to develop a powerful approximate
reasoning framework, which has learning and generalization
capabilities.

Several examples of successful fusion of fuzzy and neural
systems have been reported in the literature over the past few
years. Jang and Sun (1995) developed an adaptive network–
based fuzzy inference system (ANFIS) that identifies a set of
parameters through a hybrid learning rule combining the
backpropagation gradient descent and least square method.
Takagi and Hayashi (1991) proposed a neural–network driv-
en fuzzy reasoning algorithm. This algorithm is capable of
automatic determination of inference rules and adjustment
according to the time–variant reasoning environment. Nie
and Linkens (1992) demonstrated that a backpropagation
neural network that is based on the fuzzy set theory could im-
plement approximate reasoning. Horikawa et al. (1992) pre-
sented a fuzzy modeling method, which uses a fuzzy system
fused into a neural network with backpropagation algorithm.
The method can identify the fuzzy model of a nonlinear sys-
tem automatically. Mitra and Pal (1994) developed a fuzzy
layered neural network for classification and rule generation.
This model is a logical version of the feedforward multilayer
perceptron using the concept of fuzzy set at various stages.
The model can handle uncertainty and/or impreciseness in
the input and output representations. Simpson and Jahns
(1993) proposed a fuzzy min–max neural network for func-
tion approximation. This network is realized by fusion of
fuzzy sets and neural networks in a unified framework. In
general, all these methods interpret a fuzzy system in terms
of a neural network such that each step in the process is equiv-
alent to at least one layer in the network.

THEORETICAL CONSIDERATIONS
Evapotranspiration  (ET) is a combination of two separate

water–transfer processes whereby water is transferred from
the soil, water, and wet plant surfaces to the atmosphere by
evaporation,  and also through the crop by transpiration. In
this section we present the theoretical concepts and the as-
sumptions considered in the development of the ET estima-
tion model by looking at the controlling forces of ET and how
these affect the rate of water transfer by a cropped surface to
the atmosphere. A more complete review of the physics and
relationships useful in analyzing the phenomenon of evapo-
ration are found in Monteith (1973) and Brutsaert (1982).
Briefly, ET is controlled by two conditions: the amount of en-
ergy available for use in the vaporization process (ε), and an
atmospheric factor (C) representing the capacity of the atmo-
sphere to absorb water vapor. Solar irradiance (RS) is the
main source of latent heat of vaporization. In hot arid cli–
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ates, sensible heat from the air may contribute energy for the
vaporization process. At low temperatures, part of the solar
energy is generally converted to sensible heat to raise the air
temperature (T) and is unavailable for the vaporization pro-
cess. The amount of incoming solar irradiance converted to
sensible heat is best reflected by the difference between daily
maximum and minimum air temperatures, i.e., temperature
difference, TD (Hargreaves and Samani, 1985). In our trial
runs, the TD appeared to best represent the air temperature
factor involved in the evapotranspiration process when used
in combination with RS Therefore, ε was taken as a function
of RS and TD.

When the energy available for use in the vaporization pro-
cess (ε) is low, the amount of water transferred by ET is low.
Evapotranspiration  increases with increase in ε and is only
limited by C, when soil water is not limiting. The atmospher-
ic factor (C) depends on the relative humidity (RH) of the air.
Relative humidity is dependent on air temperature and varies
considerably throughout the day such that when the tempera-
ture rises, relative humidity falls and vice versa. This behav-
ior occurs irrespective of the actual changes in atmospheric
moisture levels. Wind speed (Ud) influences the capacity of
the atmosphere to absorb moisture by replacing the nearly
saturated air layers near the crop surface with unsaturated air
from outside the crop canopy. The contribution of Ud to C de-
pends on RH. When RH is high, the contribution of Ud to C
is low, and when RH is low, the contribution of Ud to C is high.
Thus C is a function of RH and Ud. The plant canopy resist-
ance (rc) provides an important link between the plant canopy
and the atmosphere. Hence, ET is a function of ε, C, and rc,
where rc is plant canopy resistance to vapor exchange be-
tween the plant canopy and the atmosphere. The plant canopy
resistance depends on the leaf area index and stomatal resist-
ance of the leaves.

CONCEPTUAL AND STRUCTURAL BASIS 
OF THE MODEL

The conceptual model in figure 1 can represent the pro-
cesses involved in ET. The relation between inputs and out-
put inside boxes 1, 2, and 3 are not fully understood and/or
defined. In trying to model these processes, we are faced with
two idealized extremes, where either (1), we know exactly
how the system should be working but have no example of its
input–output behavior, or (2), we know its input–output be-
havior but know nothing of the system’s internal working
(black box). In the first case, it is convenient to use fuzzy log-
ic (FL) reasoning to describe the system behavior. In the sec-
ond case, it is convenient to use the available input–output
examples to train artificial neural networks (ANN) to model
the internal workings of the system.

In the real world system, we have partial knowledge of
what is inside the boxes, and some examples of the system’s
input–output behavior. Hence, we may use a combination of
FL and ANN tools to model the ET process. The main issues
considered in integrating FL and ANN systems for the ET
model are the strategy to be adopted in combining the two to-
gether, and how to facilitate cognitive learning and knowl-
edge representation. Many methods for combining FL and
ANN systems have been suggested (Khosla and Dillon, 1997;
Takagi, 1997; Tsoukalas and Uhrig, 1997). In this study, we
fused the FL and ANN together on a conceptual and

RS

TD

RH

Ud

f(RS,TD)

f(RH,U )d

c ET

(1)

(2)

(3)

εf( ,C,Kr )

ε

C

Figure 1. A physically based conceptual model of the evapotranspiration
process where weather parameters (RS, TD, RH, and Ud) get mapped to
intermediate ε and C, and then to ET.

structural basis to give the resultant model the ability to learn
and deal with new situations.

In the fused fuzzy–neural system, the information–proc-
essing features of the FL are fused into the representation
structure of ANN. The resultant structure consists of a six–
layer feed–forward neural network (fig. 2), which corre-
sponds to the conceptual model in figure 1. The model
generates output by implementing a fuzzy inference scheme
through the various layers of the network. Each layer of the
network performs one stage of the fuzzy inference process.
The stages of the fuzzy inference process are: (1) transforma-
tion of real numerical input data into fuzzy sets (a process
known as fuzzification); (2) fuzzy reasoning based on the
control rules (rule base); and (3) transformation of the fuzzy
output of a fuzzy inference into real numerical numbers (a
process known as defuzzification). A detailed description of
the fuzzy inference process can be found in several refer-
ences, including Kaufmann and Gupta (1991), Jang and Sun
(1995), and Tsoukalas and Uhrig (1997).

DATA SPACE AND MEMBERSHIP FUNCTIONS
The input and output data spaces used for model develop-

ment are shown in table 1. The input and output spaces were
selected to include a wide variety of climates between lati-
tudes 60³N and 60³S. The model inputs include measured
daily solar irradiance (RS) in MJ m–2 d–1, percent relative hu-
midity (RH) computed as the average of maximum and mini-
mum daily relative humidity, average daytime wind speed
(Ud) in m s–1, and air temperature difference (TD) computed
as the difference between maximum and minimum daily air
temperature in ³C. The model output was ET in mm d–1. The
intermediate parameters were available energy for vaporiza-
tion (ε) expressed in equivalent water evaporation, and an at-
mospheric factor (C) representing the capacity of the
atmosphere to absorb water vapor. The input, intermediate,
and output data spaces were categorized into five fuzzy sets.
These were VERY LOW (VL), LOW (LO), MEDIUM (ME),
HIGH (HI), and VERY HIGH (VH). Any arbitrary curve
whose shape is suitable from the point of view of simplicity,
convenience,  speed, and efficiency can be used as a neuron
activation function. In this case, Gaussian distribution mem-
bership functions were used to determine the degree of mem-
bership of data points to the respective fuzzy sets (fig. 3).
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Figure 2. A fuzzy–neuron system involving a fuzzy system fused into a
neural network where weather parameters (RS, TD, RH, and Ud) get
mapped to intermediate ε and C, and then to ET. Layer 3 represents all
possible combinations of fuzzy sets between RS and TD, and RH and Ud.

Table 1. Input and output data space used in the 
fuzzy–neural ET model.

Input / output parameters Minimum Maximum Units
Solar radiation (RS) 2 37 MJ m–2 d–1

Temperature difference (TD) 0 25 �C

Relative humidity (RH) 20 100 %

Wind speed (Ud) 0 10 m/s
Evapotranspiration (ET) 1 12 mm/d

Figure 3. Illustration of the input /output data space divided into five fuzzy
sets (VL, LO, ME, HI, and VH) and showing the definition of center (�)
and spread (�) for the set ME.

IMPLEMENTATION OF THE 
FUZZY ALGORITHM

The fuzzy algorithm was implemented through the vari-
ous layers of the neural network (fig. 2). The nodes in layer
1 are fan–in neurons. They receive the input weather parame-
ters, i.e., RS, TD, RH, and Ud, and distribute them to the neu-
rons in layer 2 without doing any computation. The neurons
in layer 2 represent the fuzzy sets used in the antecedent parts
of the control rules, i.e., VL, LO, ME, HI, and VH. Each neu-
ron consists of an activation function used to compute mem-
bership functions for the input variable it receives from layer
1. Each neuron has only one input variable and one output
membership function. For example, if an input variable RS
is passed through the neuron representing the fuzzy set LOW,
then the output is �LOW(RS). This neuron feeds its output to
all the rules using the clause ‘if RS is LOW’ in the ‘IF’ part
of the rules. The Gaussian distribution curve was used as the
neuron activation function and is given by:

( ) ( )( )22 2/exp ��� −−= xxLOW
 (1)

where �LOW(x) is the membership value for the fuzzy set
LOW, x is the input variable, � describes the ‘center’ of the
membership function, and � is the spread of the membership
function (fig. 3). The shape and position of the membership
function will change if either � or � is changed. The center
and spread are considered as weights on the input links to this
layer, analogous to the approach taken with radial–basis–
function units in neural networks (Moody and Darken, 1989).
Jang and Sun (1993) showed that under some minor restric-
tions, the functional behavior of radial basis function net-
works and fuzzy inference systems are equivalent.

A neuron in layer 3 corresponds to a rule in the FL rule
base. Its inputs come from the neurons in layer 2 which par-
ticipate in the ‘IF’ part of that rule. The number of neurons
in this layer is equal to the number of control rules that are
used to capture the relationship between the input parameters
and desired output. For example, we have 25 rules (5 Ü 5
combination) drawn to capture the relationship between RS,
TD, and ε in box 1 (table 2). Similarly, there is also another
set of 25 rules defining the relationship between RH, Ud, and
C in box 2 (table 2). Thus layer 3 has a total of 50 neurons rep-
resenting 50 rules. Each neuron in this layer performs the
fuzzy ‘AND’ operation. The choice of the implication opera-
tor is based on the interpretation of the connective ‘AND’. In
trial runs, we tried three commonly used implication opera-
tors, namely, Zadeh minimum implication operator, the arith-
metic implication operator based in multi–valued logic, and
the Larsen product implication operator. The Larsen product
(�p) implication operator (Larsen, 1980) gave the best results
and was used in the model to evaluate the conjunction ‘AND’
in the rules. For example, if �HIGH(RS) = 0.88 and �MEDIUM(TD)
= 0.59 in a rule, then the firing strength of the rule (��) can
be expressed as follows:

            �� = �p(�HIGHRS), �MEDIUM(TD)) 

          = �p(0.88, 0.59) = 0.52 (2)
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Table 2. Initial fuzzy rules before optimization. The antecedent fuzzy
sets are defined by their centers and spreads, and the consequent fuzzy

sets are defined by their centers only.
Box 1

           RS

TD

VL
ϕ = 2.0
δ = 3.72

LO
ϕ = 10.75
δ = 3.72

ME
ϕ = 19.5
δ = 3.72

HI
ϕ = 28.25
δ = 3.72

VH
ϕ = 37.0
δ = 3.72

VL
ϕ = 0.0
δ = 2.65

0 0 0 0 0

LO
ϕ = 6.25
δ = 2.65

0 0 0 0 0

ME
ϕ = 12.5
δ = 2.65

0 0 0 0 0

HI
ϕ = 18.75
δ = 2.65

0 0 0 0 0

VH
ϕ = 25.0
δ = 2.65

0 0 0 0 0

Box 2

          RH

Ud

VL
ϕ = 20.0
δ = 8.5

LO
ϕ = 40.0
δ = 8.5

ME
ϕ = 60.0
δ = 8.5

HI
ϕ = 80.0
δ = 8.5

VH
ϕ = 100.0

δ = 8.5

VL
ϕ = 0.0
δ = 1.06

0 0 0 0 0

LO
ϕ = 2.5
δ = 1.06

0 0 0 0 0

ME
ϕ = 5.0
δ = 1.06

0 0 0 0 0

HI
ϕ = 7.5
δ = 1.06

0 0 0 0 0

VH
ϕ = 10.0
δ = 1.06

0 0 0 0 0

The neurons in layer 4 evaluate the consequent ‘THEN’
part of the rules. A neuron in this layer corresponds to a con-
sequent label (i.e., VL, LO, ME, HI, and VH). Input to this
layer comes from all the rules in layer 3, which use this partic-
ular consequent label. Layer 4 neurons aggregate the conse-
quents of all the rules that feed them and each computes the
output by using the center of gravity method (Tsoukalas and
Uhrig, 1997). Layer 5 has two neurons. The first neuron in
this layer combines the recommendations from all the fuzzy
control rules in the rule base governing the relations between
inputs RS, TD, and ε. The second neuron combines the rec-
ommendations from all the fuzzy control rules in the rule base
governing the relations between inputs RH ,Ud, and C. The
output of each neuron is expressed as follows:
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where Ym is the output of the neuron in layer 5 (i.e., ε or C),
�r is the activation strength of rule r, �cr is the center of the
consequent fuzzy set the rule r, m and k are the total number
of fuzzy sets in column 1 and row 1 in the fuzzy rule table (see
table 1), i is the row number, and j is the column number. The
rule number is calculated as r = (i–1)k + j. The neuron in layer
6 computes the estimated ET based on ε, C and rc. The atmo-
spheric factor (C) acts as an adjustment on ε, and hence ET
is computed as ET = f(ε,C,rc). It uses the algebraic product
T–norm operation (i.e., ET = ε Ü C Ü Krc). The parameter
rc is represented by a constant Krc assumed to be 1 for the ref-
erence crop for which the model is optimized.

OPTIMIZATION OF THE MODEL
Optimization of the model was achieved by adjusting the

center (�a) and spread (�a) of all the antecedent membership
functions, and the center (�c) of all the consequent member-
ship functions. Centers of the membership functions of indi-
vidual fuzzy sets (VL, LO, ME, HI, and VH) define the input
vectors causing maximal activation of these sets, and the
spreads of the membership function of individual fuzzy sets
determine the radii of the areas of the input space around the
centers where activations of the fuzzy sets are maximum (fig.
3). The parameters �a and �a are represented as input connec-
tion weights to neurons of layers 2, and �c as input connection
weights to neurons of layer 4. The process of adjusting the
connection weights between layers of neurons is called train-
ing, and consists of presenting the network with examples of
input–output pairs, and adjusting the connection weights un-
til the objective function is minimized. The objective func-
tion to be minimized is defined as the mean sum squared error
(MSE), which is expressed as MSE = (Yt – Ym)2/d, where Yt
is the target output, Ym is the model output, and d is the num-
ber of training data points.

TRAINING PROCEDURE
The training process consisted of two separate stages.

During the first stage, parameters �a and �a for individual in-
put fuzzy sets in layers 2 and 4 were set such that the five
fuzzy sets were distributed uniformly over the data space (see
fig. 3 and table 2). The centers for individual output fuzzy sets
were set to zero. Training pairs were selected consisting of
typical samples and patterns from the available lysimeter and
weather data range. In a forward pass, the input data (RS, RH,
Ud, TD, and corresponding lysimeter ET) were propagated
from the input to the output. Calculation of the output was
carried out, layer by layer, in the forward direction. The sec-
ond stage consisted of a reverse pass. The connections be-
tween neurons were adjusted starting with the input
connections into layer 4, and moving in reverse to the weight
of the input connections into layer 2. The other weights were
fixed at unity. This means that the weight adjustment works
on only two layers of weights, rather than all six. A batch–
training mode where the weights are only adjusted after all
of the inputs have been presented was used.

TRAINING ALGORITHM
Several algorithms for updating the parameters �a, �a, and

�c have been developed (Moody and Darken, 1989; Berenji
and Khedkar, 1992; Wang and Mendel, 1992; Mizumoto and
Shi, 1997). The gradient descent algorithm developed by Mi-

https://www.researchgate.net/publication/233784964_Fast_Learning_in_Networks_of_Locally-Tuned_Processing_Units?el=1_x_8&enrichId=rgreq-e4869b3f34a36fc02ccc8871b68c6274-XXX&enrichSource=Y292ZXJQYWdlOzI3NTUxNTA4NjtBUzoyNDgyNjAxMDc0MzYwMzJAMTQzNjIwMTIzMDI0NQ==
https://www.researchgate.net/publication/234773126_Fuzzy_Neural_Approaches_in_Engineering?el=1_x_8&enrichId=rgreq-e4869b3f34a36fc02ccc8871b68c6274-XXX&enrichSource=Y292ZXJQYWdlOzI3NTUxNTA4NjtBUzoyNDgyNjAxMDc0MzYwMzJAMTQzNjIwMTIzMDI0NQ==
https://www.researchgate.net/publication/234773126_Fuzzy_Neural_Approaches_in_Engineering?el=1_x_8&enrichId=rgreq-e4869b3f34a36fc02ccc8871b68c6274-XXX&enrichSource=Y292ZXJQYWdlOzI3NTUxNTA4NjtBUzoyNDgyNjAxMDc0MzYwMzJAMTQzNjIwMTIzMDI0NQ==
https://www.researchgate.net/publication/3529868_Back-propagation_fuzzy_system_as_nonlinear_dynamic_system_identifiers?el=1_x_8&enrichId=rgreq-e4869b3f34a36fc02ccc8871b68c6274-XXX&enrichSource=Y292ZXJQYWdlOzI3NTUxNTA4NjtBUzoyNDgyNjAxMDc0MzYwMzJAMTQzNjIwMTIzMDI0NQ==
https://www.researchgate.net/publication/5576551_Learning_and_Tuning_Fuzzy_Logic_Controllers_Through_Reinforcements?el=1_x_8&enrichId=rgreq-e4869b3f34a36fc02ccc8871b68c6274-XXX&enrichSource=Y292ZXJQYWdlOzI3NTUxNTA4NjtBUzoyNDgyNjAxMDc0MzYwMzJAMTQzNjIwMTIzMDI0NQ==
https://www.researchgate.net/publication/5576551_Learning_and_Tuning_Fuzzy_Logic_Controllers_Through_Reinforcements?el=1_x_8&enrichId=rgreq-e4869b3f34a36fc02ccc8871b68c6274-XXX&enrichSource=Y292ZXJQYWdlOzI3NTUxNTA4NjtBUzoyNDgyNjAxMDc0MzYwMzJAMTQzNjIwMTIzMDI0NQ==


1630 TRANSACTIONS OF THE ASAE

zumoto and Shi (1997) was adopted for training because of
its simplicity, efficiency, and capability to optimize the fuzzy
control rules and membership functions without changing the
form in which the rules are presented in the rule tables. For
example, the expressions for adjusting the centers (�) and
spreads (�) of the input fuzzy sets in column 1 of a fuzzy rule
table were as follows:
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where i is the index of fuzzy sets in column 1, and j is the in-
dex of fuzzy sets in row 1 (see tables 2 and 3), x is the input
parameter, �i is the center of membership functions for fuzzy
set i; �i  is the spread of membership functions for fuzzy set
i, �� and ��  are the learning rates (both = 0.0005); t is the
learning iteration; m and k are the total numbers of fuzzy sets
in column 1 and row 1 in the fuzzy rules table. The same ex-
pressions were used to adjust the fuzzy sets in row 1 of the
rule table, but the summation in the numerator of equations
1 and 2 run from i = 1 to m instead of j = 1 to k. The expres-
sions for adjusting the centers of the consequent fuzzy sets
was expressed as follows:
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where �	 is the learning rate (�3 = 0.0065). The final parame-
ters (centers and spreads) obtained for the training data set
used are presented in table 3.

SIMULATION AND RESULTS
Daily evapotranspiration (ET) data for well watered grass

along with supporting climatic data from three sites (Cross-
ville, Tennessee; Bushland, Texas; and Paraipaba, Ceara,
Brazil) representing different climates ware used in the study.
A description of the sites and climates used are presented in
table 4, where RS, RH, Ud, and T are the average solar
irradiance,  average daily relative humidity, average daytime
wind speed, and average air temperature respectively for the
periods considered. The climatic parameters were measured

Table 3. Final fuzzy rules after optimization. The antecedent fuzzy sets
are defined by their centers and spreads, and the consequent fuzzy sets

are defined by their centers only.
Box 1

             RS

TD

VL
ϕ = 1.973
δ = 3.665

LO
ϕ = 11.067
δ = 4.214

ME
ϕ = 20.397
δ = 4.974

HI
ϕ = 27.059
δ = 4.985

VH
ϕ = 37.096
δ = 3.645

VL
ϕ = 0.0601
δ = 2.8180

0.071 0.584 0.190 0.105 0.001

LO
ϕ = 7.0121
δ = 3.6890

0.292 1.277 2.826 3.440 0.040

ME
ϕ =12.4076
δ = 4.3578

0.155 1.819 1.477 3.636 0.402

HI
ϕ =17.2962
δ = 3.7805

0.022 1.383 2.175 4.101 0.978

VH
ϕ =25.4441
δ = 2.0232

0.000 0.004 0.598 2.059 0.166

Box 2

        RH

Ud

VL
ϕ = 19.994
δ = 8.483

LO
ϕ = 39.964
δ = 8.496

ME
ϕ = 60.657
δ = 9.225

HI
ϕ = 79.783
δ = 9.283

VH
ϕ = 99.722
δ = 8.998

VL
ϕ = 1.1518
δ = 2.618

0.002 0.163 0.290 1.089 0.416

LO
ϕ = 2.983
δ = 2.362

0.001 0.849 0.892 2.581 1.737

ME
ϕ = 4.150
δ = 2.026

0.026 2.443 3.520 2.932 1.440

HI
ϕ = 5.468
δ = 2.087

0.146 4.857 2.884 0.267 0.509

VH
ϕ = 10.418
δ = 0.243

0.013 0.347 0.385 0.018 0.000

from automatic weather stations, and ET was directly mea-
sured from well–watered, grass–covered weighing lysime-
ters. A summary of the characteristics of the lysimeter
facilities at each site is presented in table 5. The integrity of
the climatic data was assessed based on guidelines by Allen

Table 4. Description of location and climates of lysimeter sites evaluated.

Site (and date) No. of data Latitude
Altitude

(m)
RS

(MJ m–2 d–1)
RH
(%)

Ud
(m/s)

T
(�C)

Crossville, Tennessee
(July–Sept. 1997) 29 35�55’N 573 19.9 79.5 1.0 21.0

Crossville, Tennessee
(May–June 1994) 50 35�55’N 573 22.3 78.1 1.1 17.5

Crossville, Tennessee
(Jan.–Feb. 1997) 60 35�55’N 573 7.0 84.7 1.7 5.2

Paraipaba, Ceara, Brazil
(March–May 1998) 60 3�29’S 30 19.0 84.8 3.2 27.6

Bushland, Texas
(May–Sept. 1998/99) 37 35�11’ N 1170 23.5 59.4 4.2 22.2
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Table 5. Summary of the characteristics of the lysimeter facilities at the
evaluated sites.

Characteristic
Crossville,
Tennessee

Paraipaba, Ceara
Brazil

Bushland,
Texas

Type of lysimeter Weighing Weighing Weighing
Type of scale 

system
Lever load

cell[a]
Floor stand

scale
Lever load

cell[a]

Soil profile Monolith Reconstructed Monolith
Wall material Steel Steel Steel
Surface area (m2) 4.0 2.25 9.0
Soil depth (m) 1.8 1.0 2.3
Drainage type Free drainage Periodic drainage Free drainage
Sensitivity (ET mm) 0.05 0.18 0.05
[a] Counterbalance lever load cell.

(1996) and found to be of good quality. The records of lysime-
ter condition and maintenance were used to select days with
good measured ET data. A total of 118 days ET data were se-
lected from the three sites and divided into two sets, the train-
ing data set and the test data set. The two sets were of equal
size (n = 59). The training data were selected to cover the
available data hyperspace reasonably well, and especially to
include the data close to the decision boundaries of the hyper-
space. This set was used to train the model as described in the
training procedure.

Training was completed within MSE < 0.25 mm2, and the
model parameters frozen at the prevailing values. The model
was then used in a simulation mode with the test data to ob-
tain ET estimates. The standard errors of the estimate (Syx)
were calculated based on the ET estimates that have not been
adjusted by regression. A plot of the estimated ET by the
fuzzy–neural–model  using training data versus lysimeter
measured ET (fig. 4a) shows that the model was able to cap-
ture the relationship between the presented input weather pa-
rameters and the output ET with a good fit. The coefficient
of determination (r2) was 0.87, and the standard error of the
estimate (Syx) was 0.66 mm d–1. The FAO Penman–Monteith
equation gave an r2 value of 0.93 with the same data. When
the training completion level was set at MSE < 0.15 mm2, the
model realized an r2 value of 0.97, but then it became over–
trained and less general. The MSE level of 0.25 for training
completion was selected as a compromise between accuracy
and better model generalization. The model does not need to
be trained at every location so long as the predictor inputs are
within the hyperspace of the training data.

The performance of the model was evaluated using the in-
dependent test data. A plot of model estimated ET versus
lysimeter measured ET using the test data (fig. 4b) shows a
good fit between the two, with r2 = 0.88 and Syx = 0.48 mm
d–1. Figure 4c shows a comparative plot of the estimated ET
by the FAO Penman–Monteith equation using the test data
versus lysimeter measured ET. The r2 value in this case was
0.85 and the Syx value was 0.56 mm d–1. In order to evaluate
the performance of the fuzzy–neural–model during winter
months for which lysimeter measured data were not avail-
able, the model was trained with the FAO Penman–Monteith
equation estimated ET for a winter month (January 1997,
Crossville). The trained model was then used to estimate ET
for an independent winter month (February 1997, Cross-
ville). The model outputs were plotted versus the FAO Pen-
man–Monteith equation estimated ET. The results with
training data (fig 5a) show an almost perfect fit, with an r2 =
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Figure 4a. Estimates of ET by fuzzy–neural model versus daily lysimeter
ET using training data.
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Figure 4b. Estimates of ET by fuzzy–neural model versus daily lysimeter
ET using test data.

y = 1.015x

R2 = 0.85

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 2.0 4.0 6.0 8.0 10.0

E
st

im
at

ed
 E

T,
 m

m
 d

–1

Lysimeter Measured ET, mm d–1

Figure 4c. Estimates of ET by FAOP Penman–Monteith equation versus
daily lysimeter ET using test data.
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Figure 5a. Estimates of ET by fuzzy–neural model versus estimates of ET
by the FAO Penman–Monteith equation using training data.
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Figure 5b. Estimates of ET by fuzzy–neural model versus estimates of ET
by the FAO Penman–Monteith equation using test data

0.98 and a Syx = 0.06 mm d–1 (n = 31). The plot of ET esti-
mated with independent winter test data is shown in figure 5b.
The r2 value was 0.73 and the Syx was 0.16 mm d–1 (n = 29).
These results indicate that the fuzzy–neural–model is reason-
ably accurate and is comparable to the FAO Penman–Mon-
teith equation in different climates. The inclusion of daily air
temperature as a temperature difference appears to success-
fully address the issue of ET overestimation during low tem-
peratures observed in our previous three input parameter
fuzzy ET model (Odhiambo et al., 2001).

SUMMARY AND CONCLUSIONS
The study presented a method of eliminating the reliance

on the trial and error method to design the membership func-
tions and control rules in fuzzy ET models. The strategy con-
sisted of fusing the FL and ANN on a conceptual and
structural basis. The structure of the fuzzy–neural–model
provided a systematic and easy way of optimizing the mem-

bership functions, and extracting the fuzzy rules from input–
output examples. The results show that the optimized
fuzzy–neural–model  is reasonably accurate, and is compara-
ble to the FAO Penman–Monteith equation. Thus, optimiza-
tion of fuzzy ET models through neural training with
input–output examples can provide an easy and effective
method of tuning fuzzy ET models to new sets of climatic
conditions. Fuzzy ET models can yield accurate estimation
of ET with simpler and fewer input parameters.
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