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OCEAN CITLOROPIIYLL STUDIES FROM A
U-2 AIRCRAFT PLA'T'FORM

By
Hon.gsuk H, Kim, Charles R. McClain,
Lamdin R. Blaine, William D. Hart°

Larry P, Atkinson* and James A. Yoder*

ABSTRACT

Chlorophyll gradient maps of large ocean areas were generated from U2/OCS

data obtained over test sites in the Pacific and Atlantic Oceans. The deline-

atio,i of oceanic features using the upward radiant intensity relies oil

analysis method which presupposes that radiation backscattered from the

atmosphere and ocean surface can be properly modeled using a measurement

made at 778 mi,, The calculation of atmospheric radiance was performed

using a method developed by J, V. Dave. An estimation of the chlorophyll

concentration is performed by properly ratioing radiances measured at 472 nm

and 548 nm after removing the atmospheric effects. The correlation between

the remotely sensed data and in-situ surface chlorophyll measurements has

been validated in two sets of data. The results show that the correlation be-

tween the in-situ measured chlorophyll and the derived quantity is a negative

exponential function and the correlation coefficient was calculated to be

-0.965.

'The author is with Science Systems and Applications, Inc., Lanham, MD.

*The authors are with Skidaway Institute of Oceanography, Savannah, GA.
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OCEAN ChILOOROPHYLL STUDIES FROM A

U-2 AIRCRAFT PLATFORM

INTRODUCTION

During the last two decades, the space program has given us the opportunity to view the

ocean from a high altitude platform. As a result, interesting applications of remote sensing tech-

nology have emerged, one of which is the monitoring of chlorophyll pigments in the open ocean,

Chlorophyll information is directly related to marine productivity, thus providing the capability

of detecting locations of high biological activity. Development of operational systems which pro-

vide this information should have tremendous benefits for th,, tarvesting and maintenance of

viable fisheries. Also, it would be extremely valuable when coupled with sea surface temperature

for the oceanographic community involved in basic research.

In 1969, Clark et al., were the first investigators to measure upwelling light from an aircraft

at relatively low altitudes while simultaneously obtaining measurements of chlorophyll concentra-

tions from a surface vessel, [Clark et al., 19701. Based on their initial success, NASA/GSFC in

1974 vegan a sensor study directed toward the development of an ocean color scanner (OCS).

However, the complexities associated with the sensor development and data analysis techniques

have necessarily delayed publication of quantitative results. For instance, from the results of

Clark, et al. and later U-2 high altitude flights, it became apparent that the development of reliable

quantitative estimates of surface chlorophyll required that the contribution of backscattered radi-

ation from the atmosphere and sea surface had to be removed from the total upwelling radiance

[Hovis et al., 19731. In ensuing years, numerous field and theoretical works have been performed

in an attempt to understand the various atmospheric and oceanic properties which determine the

interactions between sunlight, the atmosphere and the ocean. Although knowledge of radiative

transfer in the atmosphere and especially the hydrosphere remains incomplete, it now appears



that sufficient progress lu► s been made to enable us to provide data products useful to the occano-

graphic community. By far the most ambitious effort towards realization of this goal is the

Nimbus-7/Coastal Zone Color Scanner which was launched in August, 1978.

In this paper, a recent OCS study is described which was initiated to prepare for a future space

experiment, i.e., the space shuttle ocean color experiment scheduled for launch in 1980. In the fol-

lowing sections, the aircraft sensor application effort, from the instrumentation to a recently suc-

cessful field mission will be discussed, empl ► a;uhig +14  `<'cR::	 scientific aspects which underlie this

remote sensing technology. This particular exercise wa y it coordinated effort with a team of ocean-

ograpliers who are studying interactions between the Gulf Stream and adjacent shelf waters in the

South Atlantic Bight.

U-2 OCEAN COLOR SCANNER (OCS)

A prototype OCS was built by NA.SA/(I r',SFI to be mounted on a U-2/aircraft which operates

at 20 km. Later two additional waits were built with slight modifications so that the second unit

can be mounted on a Lear Jet which flies at an altitude of 10 kin and the third on the Space Shuttle

which will be operated at an altitude of 280 kin in 1980. The U-2/OCS is a 10-channel scanning

radiometer having a 90 degree total field-of-view and a 3.5 milliradian instantaneous-field-of view

(IFOV). The general instrument and platform parameters are given in Table 1. The critical

Table 1
OCS and U2 Parameters

Aircraft Speed
	

201 meter/sec (390 knots nominal)

	

Aircraft Altitude
	

19.8 kilometers (nominal)
Angular Resolution (IFOV)

	
3.5 mr

Footprint
	

69.3mx69.3m
FOV
	

x-45 0 from nadir
Scan Rate (mirror speed)

	
2.727 revolutions/sec

Swath Width
	

39.6 kilometers
Output Voltage
	

0 volts to ±5 volts

	

Output Bandwidth
	

0 to 2500 Hertz
Output rms Noise Level
	

8 millivolts (nominal)

11
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radiometric and spectral characteristics i,e., spectral band, center wavelength, bandwidth, and signal-

to—noise ratio are given in Table 2.

When flown on the U-2 aircraft the OCS swath width is 39.6 km and the footprint at nadir is

approximately (69 meters)2 . For comparison the footprint of the Nimbus-7 CZCS is (826 meters)2,

The scanner utilizes a fully rotating scan mirror turning at the rate of 2.727 revolutions per

second and viewing the earth through scan angles of ±45 degrees from nadir. From the primary

scanning mirror, the incoming radiation is reflected into an optical system which includes a Dall-

Kirkham telescope, an optical disperser, a fiber optic receiver, and a cluster of ten silicor. diode

detectors, The dispersing unit consists of a 600 line per min plane diffraction grating, and an image

receiving head composed of 24 fiber optics windows. T1 ► e fiber optics receiver is adjustable along

the exit focal plane so that one of the 24 windows can be centered on a selected spectral channel.

Physically the instrument package can be described as a cylinder 75 em long by 27 cm in diameter

and weighing about 30 kgms. BecaiisO of the scan mirror and the grating element in the optical train,

the instrument is sensitive to the polarization of incoming light.

The change in signal output for parallel and perpendicular polarization components aie about

20 percent against a totally polarized light source, It has been estimated that this 20 percent degree

Table 2
Optical Parameters of the U-2 Ocean Color Scanner Channels

Spectral Calibration
Center Full Bandwidth at Radiance Function

Channel Wavelength Half Intensity (Ocean Slope
(dill) (tlm) Targets) nlw c111-2 Sr-1 µm

mw/cm2 sr µm
.__
	 volt

1 431 24.2 25.54 7.298
2 472 26.0 20.94 5.984
3 506 25.0 13.49 3.853
4 548 26.3 8.276 2,365
5 586 24.1 6,334 1,810
6 625 25.3 5.007 1.430
7 667 24.2 3,883 1.110
8 707 26.0 3.167 0.9049

9 738 24.0 40.33 11.52

10 778 26.1 2.146 0,6131

3



of polarization sensitivity in all spectral channels will introduce a small error from polarized sky

light, i.e., an error in the range of few percent in intensity measurement will occur in the blue chan-

nels under a Raleigh Sky if the sensor is flown in the solar radiant plane (Appendix A). This trait of

the U-2/OCS has been recognized and the effects are minimized by flying parallel to the solar radi-

ant plane.

U-2/OCS flight data are distributed to several investigators in the US and Western European

nations. In order to assure the radiometric accuracy of the instrument, approximately every G

months the OCS is brought back to the laboratory for testing and calibration checks. The inspec-

tion consists of an examination of each channel with respect to its spectral position, half width,

sli-tpe and radiometric calibration. The spectral examination is carried out using a 0.5 meter Ebert

spectrometer and the radiometric phase using a 1.83 nncter (0 foot) integrating sphere which is color

corrected to approximate the sun's spectral power distribution, With respect to the radiometric

calibration, the instrument scans the sphere's exit port and output from each channel is adjusted to

give maximum signal (5.0 volts) when the expected ocean color radiance is viewed by the sensor.

The principle of the integrating sphere was proposed by Sumpliner [ 1892]. fie showed that if

an illumination source is placed inside a hollow sphere which is covered internally with a perfectly

diffusing surface, the generated luminance is lambertian and is directly proportional to the total flux

emitted by the source. At GSFC, a 1.83 meter (6 ft.) diameter integrating sphere containing twelve

200 watt lamps with a 30 mni diameter port is used to simulate the upwelling light over the ocean.

The inside of the sphere is coated with barium sulphate, which acts as a diffusing medium.

The integrating sphere is calibrated using a spectrally calibrated quartz iodide secondary stand-

and lamp, The National Bureau of Standards (NBS) provides this lamp together with measurements

of its flux at 35 wavelengths in the 0.25 to 1.6 micrometer range, A spectrally calibrated mono-

chromater views both the standard lamp and the sphere to be calibrated through a 40 cm inter-

mediate integrating sphere. This intermediate sphere is secured at the entrance slit of the

monochromater and can view both sources at all 35 calibrated wavelengths. The ratio of reflections

at each wavelength is the ratio of the flux intensities. Since, the flux of the standard is known, the

4



flux from the sphere can be determined at these 35 points and Wterpolated for the retraining

wavelengths. Tills procedure is repeated for illuminations of 12 lamps down to one lamp inside

the sphere. The longterm stability of the large sphere is about 5 percent. Tile OCS instruments

are calibrated frequently, and are maintained within a 2 percent fluctuation limit to the sphere

reading,

In addition to the aforementioned calibration, the performance of the scanner was also eval-

uated using sky radiance. To effect such a comparison, the downwelling intensity was measured

at ground level by pointing the OCS toward the zenith and the resulting measurements were cor-

rected to spectral radiance values and compared with numerically calculated values. In Figure 1,

a comparison of the U-2/OCS measurements with the calculated downward radiance at sea level

for a clear atmosphere is shown. In the figure, the intensities measured by the OCS, in triangular

points, are compared with a theoretical spectral curve which is shown by dots and the dotted line.

The spectral characteristics of the downwelling intensities are almost defined for given atmospheric

conditions by the sun's position, Os, the ground reflectivity, p, and the aerosol content in the

atmosphere. )"specially, the blueness of the sky, or the variation of the intensity of the sky radl-

ation, is largely influenced by the amount of aerosol present. As shown in the figure, the majority

of the measured points overlap the theoretical spectral curve for a given 
rMI,. This can be inter-

preted as an indication of the instrument's reliability.

The calculation of the downwelling radiance was performed using a plane parallel model of

the atmosphere which was originally developed by J. V. Dave [1972]. Values of the solar irradi-

ance constants (F0 in W/m
-2

 —µ) used to compute the absolute radiance at the OCS wavelengths

were taken from Thekaekara's Table [Thekaekara, 1974).

FIELD EXPERIMENTS

'Ilie U-2/OCS and two other replicas have been frequently flown to study the oceans sur-

rounding continental North America and Western Europe. These flights were performed in support

of various ocean studies. Some of the ocean features being observed were quite visible ever..,,
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raw data form, i.e., quick look analog tape images of acid dumps in the New Fork Bight and teed

`fide (C,ynxnodiniums Brevi) bl,junas in tine ( gulf of Mexico, 11o,vever in the cases presented Isere the

chlorophyll feature was not immediately visible in raw data form and additional image enhancement

processing accompanied by the a' , xjspherie effects correction was needed to bring out the feature,

In the early stages of tite OCS project, it became apparent that extraction of the chlorophyll

signature from field data was exceedingly complicated and in some eases, it was totally impossiVe

due to the extenuating extrinsic factors influencing the ocean radiance measurement,

Therefore, it was necessary to develop a coherent analysis technique applicable to interpret data

obtained undcr a set of appropriate weather and ocean conditions. Therefore, recent U-2/(ACS flights

were set to view the oceans according to the following rules:

a. First, the UC'S data were taken only over the deep and clear water of the open ocean. It has

been observed that the reflection of light from the ocean floor and scattering by sediment would

strongly interfere with the chlorophyll absorption signature. A reliable method of treating under-

water radiative transfer processes for turbid ocean water is not well established as of this writing.

Until one can specify the light scattering properties of various phytoplankton and marines sediments

with arbitrary size distribution, only the open ocean color with relatively few impurities under a near

Rayleigh sky is dealt with in the present analysis.

b. Secondly, care was taken to collect overflight data totally free from scut-glint oil the ocean

surface. The sun-glint from the ocean surface is a substantial effect that will obliterate any informa-

tion about tlae content of the subsurface phenomena. Even though the nature of sun-glint and its

propagation patterns on airborne imagery are well understood, (Cox and Munk, 1956 and Plass et al.,

19761 the removal of its effects from ocean color data usually do not allow the isolation of true

water radiance from others. Therefore, it was determined that glint must be avoided by flying the

aircraft directly toward or away from the sun and, at the same time, maintaining a solar zenith angle

within a range of 35-60 degrees for optimum conditions.

c. In order to ininimize the atmospheric effects, the data were taken only when the sky was

clear and the surface of the ocean was relatively free of white caps..

7



d. Lastly, overfllhht dat=a bovatne meful truly wilt", mvl)ortimt sea truth 	 properly collected,

The ocean chlorophyll dMributioll 4ktct be a rapidly 01.111p^ttft! pimioniena 	 on the partiettlar

oceanic system being, studied and variability , eurmlipas%es not truly° horizontal t aat also vertical pat-

terns. In order to establish the eluantative relation of remotely sewred data with nature. the inmsitu

measurements should be made at it pre+visv locution within a few hours of the time of the overflight.

Since the U-VOCS pixel sire is on the° or(h-r of tti o) in)`, the ship's abstoluto position must be known

, 414 10
	within a hundredth of a mmauate. Chlorophyll eoncentratitm and other pertinent ocean data trust he

taken at the surface and at several depths ter give a vertical profile as well as a Inge area horizontal

distribution pattern.

Tlie shipborne surfact, truth g,,atlieriaat*, activity is the nimt important and difficult recluirement

to meet in prac'tic'e. It tans t• het. se°vcral Years to ttt°rs ,, , r.,te ;m ific"t flirlit data S6 wid ',o repeat similar

experiments to verify no mW al aiio 4s^-. I'lac Oust succvs , .ful d;ita tivere obtaiaed during the Monterey

'lay Biological I Xps rinlent Which was t'erfortned in May and September tic 197 r. An opportunity

ror a second open ocean chlorophyll experiment did lot matertalire until a pre-Georfia tight hxper-

imeut ((,T*ABI:X) took place off the coast o; Jacksonville, Florida, in the Sprint± of 1979.

ATMOSPHERIC I FFEX'TS CORRFICTION

Essentially, the upwellingt radiance ineasured at the high altitude aircraft platform consists of

two primary components, namely:

a. Photons that have not penetrated the sea surface but are returned to the sensor from the

atmospheric path and sea surface backscatterint*, The effects of these photons are considered to be

extrinsic to the ocean Color.

b. Tile photons that indeed penetrated the sepia surface arld whose sat*,matures are associated

faith the wafter and its ehloropbyR %micentraation.

The upwelling intensity in the visible channel, IXi tct , eaii be expressed as:

1Total	 IAtnr &sec } lWater	
(1)

8



Separating these two components, the 
IWater 

from tite 
IAhn &. sre 

is difficult. In practice the up-
X1	 %I

and downwelling intensity of the :sun and diffused skylight is frequently measured by surface crews

using radiometers, However no such measurements were ,taken during the OCS flight in Spring,

1979.

As an alternate approach, the use of the upwelling rad,lance in the near infrared channel for

estima` ag atmospheric effects was proposed earlier and has been studied recently [Gordon, 1978) ,

Ocean water is nearly opaque to near hiifrarcd radiation and the upwelling intensity in the infrared

region, 
ITotal

g	 , 
Ni	

, is simply,

Total	
IAtm & sfe (as Iw1te' is small)	 (2)

By modeling the upwelling radiances in both the visible and near-infrared regions, one can

derive a propott onality constant, ?? N ,. This constant can then be applied to observations on a pixel

by pixel basis, to correct the atmospheric perturbations imposed upon the visible radiation. We have:

Atm & Sfe

IX 3

Atm &Sfe	 (3)I 
Xi

Then the true water radiance (or subsurface radiance) term at each pixel can be obtained by:

IWater n ITotal MeaSUred	 ITotal Measured

Ni	 A;	 — ^^ij	 Xj	 (4)

The method defined in equation (4) is essentially an inversion analysis technique, in which the

ocean radiance and its wavelength dependence are derived from the measured total upward radiance

and the calculated atmospheric radiance. This method assumes well defined radiance values for the

atmospheric contribution.

While several numerical methods exist for the calculation of radiation transfer in the atmosphere,

modeling of the upwelling radiance was carried out by using a proven method developed by J. V.

Dave. In his method, the radiative transfer equation for a given atmosphere model is solved by de-

composing it into a series of mutually independent integro-differential equations.

9



Each of these equations is then solved by dividing the atmosphere into a finite number of

layers and using a Gauss-Seidel iterative procedure, The method can be used to compute the inten-

sity of upwclling radiation in an atmosphere bounded at the bottom by a sea surface of assumed

reflectivity (Appendix B),

In order to apply this ocean-atmospllcre radiance computation method, the conditions tinder

which the data were taken must be scrutinized and correct physical parameters must be incorporated

into the transfer equations. Tile following parameters must be incorporated into the calculations,

a. the solar zenith angle

b. sea surface reflectivity

c, the optical thickness of the atmosphere, refractive index and size distribution of the aerosols.

These define the aerosol single-scattering phase function.

Using the Dave method computer programs, one can generate radiation data points for all ex-

tensive assortment of atmospheric models, These solutions can then be specifically applied to the

particular ocean scene under investigation.

In our analysis, the computation of n%ji was performed only for the nadir observation point

(µ = 1) and for an altitude of 19.8 km at each of the OCS channels. Tine aerosol single scattering

phase function was calculated using Mie theory assuming a Jungean distribution with u* values of 3.2

and 3.5.

Also for convenience, the real component of the aerosol refractive index was assumed to be Mr

1.50 and the imaginary part, N., , was set at zero. The reflectivity of the ocean was assumed to be

1 percent even though the nominal Fresnel reflectivity of the air-sea interface is 2 percent. The ocean

surface reflection is never fully La.nbertian, but it is assumed so in the Dave programs. Therefore, in

the absence of direct sun-glint into the scanner field-of-view, the ocean surface reflectivity can be

assumed much less than 2 percent.

A graphical plot showing the upwelling intensity in each of the Ocean Color Scanner channels as

a function of aerosol content for size parameters u* = 3.2 and 3.5 is shown in Figure 2. The plots are

10
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Figure 2. Upwelling Intensity for Each OCS Channel Is Plotted Against Aerosol Content Show-
ing Radiance Differences Due to the Aerosol Size Distributions, v* = 3.2 and 3.5. The Calcula-
tions Are for Nadir Viewing Normalized to a Solar Zenith Angle of 30° and Ground Reflectivity

of 1%.

for a solar zenith angle of 30 degrees and the ordinate intensities were calculated using unity as the

value of solar flux at 80 km above the earth's surface.

The parameter n Xij from Figure 2 in the following manner. After selecting the appropriate size

parameter which is assumed to be applicable to the particular scene being analyzed, the upward

intensity for 778 nm is read from the graph for the effective TMie of the scene. The effective TMie

11
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defines the aerosol load of the atmosphere. Then the upward atmospheric intensities, 
IAtt`n & sfe 0 of

the other channels call 	 read from the graph for this aerosol load corresponding to the rMie, The

parameter, Nil for each channel is then determined from equation (3). The curved lines in the

figure represent the iso-lines of co lst'ant optical thickness, The lines show that Wavelength depend -

ettey of rMle for each size distribution v^' = 3.2 in C ^is at.d 3.5 in triangles.

From the figure, it can be seen that tlt,^ error at:p^i; strongly Oil 	 estimation of the optical

thickness at 778 nm and on the assumptions one has to make about the size parameters of the aero-

sols, In order to minimize the error of estimating the rMlc at 778 tuts, a high gain broadband IR

channel with a better signal—to—noise performance will be desirable for future systems. The error in

approximating the size distribution of the aerosols in the atmosphere may be decreased by an inter-

polative readout method and knowing the size parameter. A method to empirically derive the Junge

parameter from Angstrom's wavelength exponent formula has been discussed in earlier work [Kim

et al., 19791.

DERIVATION OF THE WATER RADIANCE FROM OCS DATA

Tile color of the ocean is truly diverse, almost any color of the spectrum call 	 observed from

the ocean under appropriate conditions. That means there will be differences in absolute spectral

radiance measured frown one place to another depending oil 	 conditions, water depth, its

content and sea state.

We have observed many different curves of spectral radiance for various locations. From these

circumstances, our experimental studies have been narrowed down to the albedo of the open ocean

where the absorption of blue light by the chlorophyll will shift the pure blueness to a somewhat

greenish color. Typical absolute spectral radiance of the open ocean should have curves which climb

almost monotonically from the near infrared into the blue where the maximum .radiance occurs at

430 µm. It should be noted that typical upwelling spectra front turbid water in the coastal zones

should have pronounced differences in the middle wavelength regions of the visible spectrum between

500 nm and 650 rim.

12



Therefore the OCS flight data was carefully examined to see if the water radiance is affected by

variations in hydrosols or bottom reflectance. Only those spectral curves which were obtained at

nadir in the absence of any noticeable sun-glint, were considered as true ocean color.

In Figure 3, curves representing absolute spectral radiance produced by total upwelling from

the ocean and the atmosphere are shown, The bars in the figure represent the actual measured radi-

ance of nine OCS channels showing the range of values for 2500 pixels taken at the nadir look angle.

The original data were taken at the Gulf Stream front off Jacksonville, Florida. Water depths varied

from 40 to 200 meters and the data was taken in midafternoon on an essentially clear day.

The measured upwelling spectral radiancy at 778 nm was about 4.8 w/m 2 -pin-sr and this figure

corresponds to a surface albedo of 0.01 according to our clear sky radiance model. Therefore, the

upwelling intensity calculations for all wavelengths were performed for a one percent surface reflee-

tivity, The results of the computations of IOn & sfe are shown by triangles and solid lines in the

figure, in order to locate a theoretical spectral curve which closely matches with the OCS measure-

merit bars in the figure, the water radiance was added to the surface reflectivity already given as one

percent. We assumed the clear ocean radiance model given by Kattawar & Humphreys [ 19761,

Clark et al., has also shown similar empirical spectral features in their original ocean color work. The

outcome of our computations, using albedo slope given by the solid line in Figure 4, is shown by the

dotted line in Figure 3, This maneuver is necessary to confirm the validity of the assumptions being

made to construct a clear ocean radiance model.

Once the shape of the spectral plot of ocean radiance has been identified, equation (4) can be

applied on a pixel by pixel basis. The resultant spectral features of true water radiance at high and

low chlorophyll concentrations are given in Figure 5. These spectral features are different from those

of the true natural upwellings recorded at the immediate surface. Instead they represent the water

radiance that can be perceived at a 20 km height. The top trace belongs to the upwelling radiance of

the ocean area where the chlorophyll concentration was reported as 0.2 pg/L at a 2 meter depth and

the corresponding chlorophyll value of the lower trace was 7 pg/L respectively. Interestingly the
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curves in Figure 5 resemble the theoretical water radiance plots, minus the white cap contributions,

given by Quenzel et al. ( 1978) .

CI°ILOROPHYLL ANALYSIS AND VALIDATION OF TIIE RESULTS WITH

IN-SITU MEASUREMENTS

A number of authors have demonstrated the influence of chlorophyll content on the shape of

water spectra and have utilized these features for remote sensing [Arvesen et al,, 1973; Grew, 1973;

and Viollier et al., 1978] . Most of these studies link the chlorophyll concentration in the ocean with

changes in the upwelling radiation in two wavelength bands: one in the 450-500 nin region and the

other in the green region between 525-540 nm. Recently, the successful extraction of chlorophyll

information from spectral bands near 685 nm and 662 nm have been reported [Neville and Gower,

1977 and Wilson et al., 19781.

Two sets of U2-OCS data have provided opportunities to verify the ability of the described

analysis technique to detect variations in chlorophyll content in deep ocean water. The first of these

data sets was obtained during a Monterey Bay Biology Study Experiment which was conducted

jointly by Oregon State University, the U.S. Naval Post-Graduate School and NASA/GSFC teams.

The second data set was obtained from a U2-OCS flight in support of a pre-Georgia Bight Experi-

ment (GABEX) cruise. This experiment was conducted in the Atlantic coastal waters near Jackson-

ville, Florida by L. Atkinson (Skidaway Institute of Oceanography) and associates from Skidaway,

the University of Miami and North Carolina State University.

The analysis technique consisted of first determining the ocean spectral radiance from OCS data

by applying a correction to eliminate the obscuring effects of the atmosphere. This involved the use

of equations 1-4. After the ocean radiance was obtained for two OCS channel wavelengths, 472 nm

and 548 nm, the following ratio was calculated

IWater
—

IWater
47 2 nm 548 nmR =

Pater +1Water
472 nm 548 nm

f
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The ratio, R, is referred to as the chlorophyll index. 'These particular spectral bands were

chosen because, as indicated in Figure 5, light at 472 nra is highly affc :tcd by chlorophyll absorption

while light at 548 tttn is minimally affected. The chlorophyll index wa; calculated on a pixel by pixel

basis for selected scenes derived from OCS data from the two experimem s mentioned above, Com-

puter produced images of the chlorophyll index from these scenes were made and recorded on

photographic film. 'These images represented areal maps of the chlorophyll gradients within the

boundaries of the scenes in Figure 0 and Figure 7. Areas of relatively high cltlorophyll concentration

were represented by darker areas on the photograph while low concentration was represented by

lighter areas. Figure G is an image of chlorophyll index produced from the Monterey Experiment.

Comparison of the chlorophyll index, R, with the chlorophyll concentration, G, measured by a sur-

face vessel at the 11 points shown on the image, indicates, as expected, a distinct ntgative relation-

ship between the R and C. On the left of the scene, the flow of the California Current which is low

in bio-productivity, is made evident by the li,glit shade of the ocean. This data set was,the first in

which it was possible to confirm the validity of the described concept of cliloropilyfl analysis [Zane-

veld, 19781,

The second opportunity for validation was provided by the recent Florida overflight. In a care-

fully designed procedure, the U2 was flown in three parallel and two skew lines covering an area of

high chlorophyll concentration. This chlorophyll feature, as monitored by the R/V Gillis, covered an

elongated area, greater than 100 km in length, located on the western edge of the Gulf Stream, A

composite image of the chlorophyll index was made from the three parallel flight lines and is dis-

played in Figure 7. This composite clearly shows the distinct upwelling feature extending from top

to bottom on the image. The feature separates the shelf water on the left from the infertile Gulf

Stream on the right. Flight line F was approximately 18° to the solar plane and was coincident with

R/V Gillis track as it proceeded from the Gulf Stream over the chlorophyll maximum to the shelf. A

trace of the concentration as measured by the ship is shown in Figure 813. Above this trace, in Figure

8A, is the trace of the chlorophyll index, R, derived from the OCS as it covered the same course as

18
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the ship .,., two to three hours prior to the ship's transect. `flie numbers along the bottom of Figure

813 indicate ship stations where the location of the ship anal chlorophyll concentration are precisely

known. `I'i►e two traces show good agreement in the loci ► tio ►t where the concentration is low or

moderate; that is, where the chlorophyll concentration is below about 10 pps/h. At concentrations

abovii this amount, the index loses sensitivity. Absorption of the blue light by the chlorophyll pig-

ment varies as an inverse exponential of the concentration and thus as the concentration becomes

larger, variation of absorption becomes less sensitive to variation of concentration. Hence the peak

in concentration as detected by ti ►e ship is not clearly distinguishable in the trace of the index.

Oil the other ]land, a sharp minor peak in the chlorophyll concentration between stations 214

'. 1%1215 is very distinctly seen in the trace of R. A point of interest is t] ►e peak in the trace of R be-

t­ J ►i stations 210 and 211. This peak is an anomaly which resulted when the. U1. had the research

ship In its view. This fortuitous ;sighting permitted accurate mapping of the ship track oil the OC8

image. Figurr R'shows the change in sea surfaec temperature along the track indicating a rather

weak thermal signature. In order to provide an idea of the vertical ehlorophyll distribution, higurc

9 is shown. It indicates a large subsurface peak 15-25 meters Clown, but trite top 15 nieters is quite

uniform.

A plot was made of the chlorophyll concentration C and the ehlorophyll index R for the seven

station locations from the Atlantic experiment, in triangles, and five deep water spots front the

Pacific Ocean, in crosses, This plot is shown in Figure 10. A least squares method was used to fit

the data with a line of the following form:

C = aeb It

The coefficients a and b were determined to be 801 ggs/l. and 20.8, respectively. The correla-

tion coefficient for the points in Qn (C) versus R was -0.965. It would be desirable to establish a

universal quantitative relationship between ti ►e chlorophyll concentration, C, and R, or some other

parameter produced from remote sensed data. 'riiis would require repeated field experiments so that

a library of data could be developed.
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Figure 9. Vertical Distribution of Chlorophyll at Gillis Station 209 Just South of Transect E.

CONCLUSIONS

The preceding sections summarize recent progress in the development of ocean colorimetric

techniques for detecting ocean chlorophyll. It is believed that some significant gains have been

achieved in constructing ocean chlorophyll gradient maps which closely match surface truth. The

method used to remove the effects of the earth's atmosphere should also be useful in processing

similar satellite imagery since the raw data was collected from a U-2 aircraft flying at 19.8 km alti-

tude where approximately 95% of the total atmosphere is included.
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Earlier efforts to use U-2/OCS data have been hampered by the fact that the data was generally

obtained in coastal regions, Coastal color phenomenology is extremely complex and multifaceted.

The utilization of the analysis technique that has been described could not be demonstrated in a

specific application due to the lack of a reliable underwater radiative transfer process modeling

method which could deal with the light scattering properties of hydrosols. For these reasons, the

authors have limited the scope of this study to conditions of clear water in open ocean areas. The

results of the study confirm the validity of the approach.

Thus far, the results of the study indicate that the application of this colorimetrie technique for

bio,-resources remote sensing is well suited to open ocean studies. As exhibited in the correlation

plot of Figure 10, chlorophyll measurement is easiest when concentrations are in the 'iow pg/L range.

This is because the upwelling radiance changes due to the chlorophyll concentration is an exponen-

tial function and the quantizing range of the instrument will determine the upper limits of resolvable

chlorophyll concentration. The data shows that the chlorophyll concentration can be determined up

the 10 yg/L level with reasonable accuracy and reliability. Chlorophyll distribution patterns in the

open ocean are an important indication of changes in water type which reflect the circulation and

anomalies associated with the main flow, such as regional upwelling phenomena, or meandering ed-

dies. The subtle differences in chlorophyll content in large water bodies of different origins can be

recognized by this ocean colorimetric technique. For these reasons it is desirable that further study

be conducted to obtain more comprehensive data sets so that the analysis algorithms can be further

improved.
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APPENDIX A

The effect of OCS's polarization sensitivity to the sky polarization can be estimated in the

following manner.

tltjr	 Ii	
OA)

Ir 	 trttr	 fro

where I1 and Ir are the intensities of the orthogonal components of the incident light, I t and Ir are

the intensities measured by OCS and tl, tir, tr ► trl are radiative transfer matrix elements characteriz-

ing the instruments. For OCS, t l and tr were 1.0 and 0.8 respectively and te r and trl were zero. The

components, Ii and Ir , are computed by using a modified Dave program in which polarization

characteristics of the radiation are taken into account, In the cases where the OCS was flown either

directly away or toward the sun while maintaining a solar zenith angle of 45°, the scanner's ±450

scan is orthogonal to the solar radiance plane. This scanting motion will not cause a change in polar-

ization direction, but will cause a fluctuation in total intensity.

The calculated normalized intensities of components Ii and Ir at 548 nm for a 1% ground

reflectivity are given in the following table.

Scan Angle	 Ii	 Ir

00	 0.623	 0.373

±45 0	0.576	 0.424

From equation IA, the total intensities perceived by the instrument at 0 0 and ±45 0 scan angles are

0.9245 and 0.9151 respectively. The error in Itotal that is introduced by the instrument is:

0.9245 — 0.9151
error =	

0.9245	
x 100 = 1.01%

A-1

Krr,`iri-4G-._,:wife _.. :A'. ..,t.



APPENDIX B

The technical report for the scalar case which was developed for NASA by J. V. Dave in

1972 pertains to the basic transfer equation for a plane parallel atmosphere which has the following

forms;

'

	

	 d  (T,	
= I (z; P,	 w(T) J(r: P, ^0)

µ dT

Where p, V are directional parameters and r refers to optical depth. w(r) is the single scattering

albedo and J, the source function is given by

J(T; µ, ^) = %aFe-T l µ o P(T; µ, gyp: -- lao,'Po) + %47r-1 ffo n P(T: µ, +P, µ', gyp') I(T: µ , +P) d^,d^,

F denotes for the solar flux and P(TC p, gyp; µ', gyp') is the normalized scattering phase function. This

quantity represents the fraction of incident energy scattered by a unit volume at T and includes the

contribution of Mie and Rayleigh scattering.

Detailed aspects of these computation programs are divided into 4 part reports (NAS-5-21680).

The purpose of the Fortran programs are for computing the intensity of the scattered radiation

emerging at any level of a plane parallel, non-homogeneous atmosphere continuing an arbitrary ver-

tical distribution of ozone concentration and an aerosol number density, and bounded at the lower

end by a Lambert ground of known reflectivity.

t1

B-1



FIGURE CAPTIONS

Figure 1. A Measurement of Downward Atmospheric Radiance by the Use of U2/OCS, in Triangles,

Is Compared with the Calculated Values Given in Dots,

Figure 2. Upwelling Intensity for Each OCS Channel is Plotted Against Aerosol Content Showing

Radiance Differences Due To the Aerosol Size Distributions, v* = 3.2, in Dots, and 3,5, in

Triangles. 'The Calculations Are for Nadir Viewing Normalized to a Solar Zenith Angle of

30° and Ground Reflectivity of 196.

Figure 3. Plots of Upwelling Radiance at Nine OCS Channels. Bars Are Actual OCS Data Taken

From U-2 Flight off the Jacksonville, Florida. The Solid Line Indicates Calculated

Radiance of the Atmosphere and Surface Reflection, and the Dotted Line Corresponds to

Calculated Radiance which Includes the Radiance Contribution of Ocean Subsurface

Layer.

Figure 4. Plots of Clear Ocean Albedo Showing Their Wavelength Dependency. Solid Line Profile

Was Used for Our Calculation.

Figure 5. Derived Water Radiance from OCS Data: The Spectral Feature from Low Chlorophyll

Concentration Is Shown in Circles and Interconnecting Line. The Triangular Trace Belongs

to That of a High Chlorophyll Zone.

Figure 6. A Composite of Ancillary Map and Computer Enhanced Chlorophyll Gradient Image of

the Dotted Area off the Coast of Monterey Bay, California.

Figure ?. Similar Composite as Figure 6. The Test Site Is About 100 km East of Jacksonville,

Florida.

Figure 8. Chlorophyll Index Derived from OCS Data (8A) and a Trace of the Chlorophyll Concen-

tration and Surface Sea Temperature as Measured by the Ship (813 and C) Over the Ship-

track E. The Numbers Along the Bottom of B Indicate Ship Station Numbers. Sighting of

the R/V Gillis Is Shown in Arrow in 8A.



Figure 9. Vertical Distribution of Chlorophyll at Gillis Station 209 Just South of Transect E.

Figure 10, Correlation Between the Measured Chlorophyll Concentration, C, and Derived Products,

R, by Taking the Ratio of 1472 nm and 1548 nm is Shown. The Calculated Correlation

Coefficient for the Points Was -0,965.
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