287 research outputs found

    Submarine landslides on the upper southeast Australian passive continental margin – preliminary findings

    Get PDF
    The southeast Australian passive continental margin is narrow, steep and sediment-deficient, and characterized by relatively low rates of modern sedimentation. Upper slope (\u3c1200m) sediments comprise mixtures of calcareous and terrigenous sand and mud. Three of twelve sediment cores recovered from geologically-recent, submarine landslides located offshore New South Wales/Queensland (NSW/QLD) are interpreted to have sampled failure surfaces at depths of between 85 cm and 220 cm below the present-day seabed. Differences in sediment physical properties are recorded above and below the three slide-plane boundaries. Sediment taken directly above the inferred submarine landslide failure surfaces and presumed to be post-landslide, returned radiocarbon ages of 15.8 ka, 20.7 ka and 20.1 ka. The last two ages correspond to adjacent slide features, which are inferred to be consistent with their being triggered by a single event such as an earthquake. Slope stability models based on classical soil mechanics and measured sediment shearstrengths indicate that the upper slope sediments should be stable. However, multibeam sonar data reveal that many upper slope landslides occur across the margin and that submarine landsliding is a common process. We infer from these results that: a) an unidentified mechanism regularly acts to reduce the shear resistance of these sediments to the very low values required to enable slope failure, and/or b) the margin experiences seismic events that act to destabilise the slope sediments

    Classical Cosmological Tests for Galaxies of the Hubble Ultra Deep Field

    Full text link
    Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of galaxies for which the angular sizes, surface brightness, photometric redshifts, and absolute magnitudes are found. The catalog contains a total of about 4000 galaxies identified at a high signal-to-noise ratio, which allows the cosmological relations angular size{redshift and surface brightness-redshift to be analyzed. The parameters of the evolution of linear sizes and surface brightness of distant galaxies in the redshift interval 0.5-6.5 are estimated in terms of a grid of cosmological models with different density parameters. The distribution of photometric redshifts of galaxies is analyzed and possible superlarge inhomogeneities in the radial distribution of galaxies are found with scale lengths as large as 2000 Mpc.Comment: 23 pages, 9 figures, 1 tabl

    A large-scale survey for variable stars in M33

    Full text link
    We have started a survey of M 33 in order to find variable stars and Cepheids in particular. We have obtained more than 30 epochs of g'r'i' data with the CFHT and the one-square-degree camera MegaCam. We present first results from this survey, including the search for variable objects and a basic characterization of the various groups of variable stars.Comment: To appear in the proceedings of the "Nonlinear stellar hydrodynamics", conference in honor of Robert Buchler's 65th birthday, July 2007, Pari

    The natural science of cosmology

    Full text link
    The network of cosmological tests is tight enough now to show that the relativistic Big Bang cosmology is a good approximation to what happened as the universe expanded and cooled through light element production and evolved to the present. I explain why I reach this conclusion, comment on the varieties of philosophies informing searches for a still better cosmology, and offer an example for further study, the curious tendency of some classes of galaxies to behave as island universes.Comment: Keynote lecture at the seventh International Conference on Gravitation and Cosmology, Goa India, December 201

    Structure of the Galaxies in the NGC 80 Group

    Full text link
    BV-bands photometric data obtained at the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 galaxies under consideration are classified by us as lenticular galaxies. The stellar populations in the galaxies are very different, from old ones with ages of T>10 Gyrs (IC 1541) to relatively young, with the ages of T<2-3 Gyr (IC 1548, NGC 85). In one case, current star formation is known (UCM 0018+2216). In most of the galaxies, more precisely in all of them more luminous than M(B) -18, two-tiered (`antitruncated') stellar disks are detected, whose radial surface brightness profiles can be fitted by two exponential segments with different scalelengths -- shorter near the center and longer at the periphery. All dwarf S0 galaxies with single-scalelength exponential disks are close companions to giant galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological traces of minor merger are found in the lenticular galaxy NGC 85. Basing on the last two points, we conclude that the most probable mechanisms for the transformation of spirals into lenticular galaxies in groups are gravitational ones, namely, minor mergers and tidal interactions.Comment: 24 pages, 9 figures, slightly improved version of the paper published in the December, 2009, issue of the Astronomy Report

    Superclusters of galaxies in the 2dF redshift survey. III. The properties of galaxies in superclusters

    Get PDF
    We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift Survey to study the properties of galaxies in superclusters. We compare the properties of galaxies in high and low density regions of rich superclusters, in poor superclusters and in the field, as well as in groups, and of isolated galaxies in superclusters of various richness. We show that in rich superclusters the values of the luminosity density smoothed on a scale of 8 \Mpc are higher than in poor superclusters: the median density in rich superclusters is δ7.5\delta \approx 7.5, in poor superclusters δ6.0\delta \approx 6.0. Rich superclusters contain high density cores with densities δ>10\delta > 10 while in poor superclusters such high density cores are absent. The properties of galaxies in rich and poor superclusters and in the field are different: the fraction of early type, passive galaxies in rich superclusters is slightly larger than in poor superclusters, and is the smallest among the field galaxies. Most importantly, in high density cores of rich superclusters (δ>10\delta > 10) there is an excess of early type, passive galaxies in groups and clusters, as well as among those which do not belong to groups or clusters. The main galaxies of superclusters have a rather limited range of absolute magnitudes. The main galaxies of rich superclusters have larger luminosities than those of poor superclusters and of groups in the field. Our results show that both the local (group/cluster) environments and global (supercluster) environments influence galaxy morphologies and their star formation activity.Comment: 13 pages, 10 figures, submitted to Astronomy and Astrophysic

    The Apparent and Intrinsic Shape of the APM Galaxy Clusters

    Get PDF
    We estimate the distribution of intrinsic shapes of APM galaxy clusters from the distribution of their apparent shapes. We measure the projected cluster ellipticities using two alternative methods. The first method is based on moments of the discrete galaxy distribution while the second is based on moments of the smoothed galaxy distribution. We study the performance of both methods using Monte Carlo cluster simulations covering the range of APM cluster distances and including a random distribution of background galaxies. We find that the first method suffers from severe systematic biases, whereas the second is more reliable. After excluding clusters dominated by substructure and quantifying the systematic biases in our estimated shape parameters, we recover a corrected distribution of projected ellipticities. We use the non-parametric kernel method to estimate the smooth apparent ellipticity distribution, and numerically invert a set of integral equations to recover the corresponding distribution of intrinsic ellipticities under the assumption that the clusters are either oblate or prolate spheroids. The prolate spheroidal model fits the APM cluster data best.Comment: 8 pages, including 7 figures, accepted for publication in MNRA

    Cosmographic Hubble fits to the supernova data

    Full text link
    The Hubble relation between distance and redshift is a purely cosmographic relation that depends only on the symmetries of a FLRW spacetime, but does not intrinsically make any dynamical assumptions. This suggests that it should be possible to estimate the parameters defining the Hubble relation without making any dynamical assumptions. To test this idea, we perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets. Based on this supernova data, the "preponderance of evidence" certainly suggests an accelerating universe. However we would argue that (unless one uses additional dynamical and observational information) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration reduces to the question of whether the relevant graph slopes up or down. Turning to the details of the cosmographic fits, three issues in particular concern us: First, the fitted value for the deceleration parameter changes significantly depending on whether one performs a chi^2 fit to the luminosity distance, proper motion distance or other suitable distance surrogate. Second, the fitted value for the deceleration parameter changes significantly depending on whether one uses the traditional redshift variable z, or what we shall argue is on theoretical grounds an improved parameterization y=z/(1+z). Third, the published estimates for systematic uncertainties are sufficiently large that they certainly impact on, and to a large extent undermine, the usual purely statistical tests of significance. We conclude that the supernova data should be treated with some caution.Comment: 28 pages, 4 figure

    M31N 2005-09c: a fast FeII nova in the disk of M31

    Get PDF
    Classical novae are quite frequent in M~31. However, very few spectra of M31 novae have been studied to date, especially during the early decline phase. Our aim is to study the photometric and spectral evolution of a M31 nova event close to outburst. We present photometric and spectroscopic observations of M31N 2005-09c, a classical nova in the disk of M31, using the 1.3m telescope of the Skinakas Observatory in Crete (Greece), starting on the 28th September, i.e. about 5 days after outburst, and ending on the 5th October 2005, i.e. about 12 days after outburst. We also have supplementary photometric observations from the La Sagra Observatory in Northern Andalucia, Spain, on September 29 and 30, October 3, 6 and 9 and November 1, 2005. The wavelength range covered by the spectra is from 3565 A to 8365 A. The spectra are of high S/N allowing the study of the evolution of the equivalent widths of the Balmer lines, as well as the identification of non-Balmer lines. The nova displays a typical early decline spectrum that is characterized by many weak FeII multiplet emissions. It is classified as a Pfe_{fe} nova. From the nova light curve, we have also derived its speed class, t=14+-2.5 days. As the nova evolved the Balmer lines became stronger and narrower. The early decline of the expansion velocity of the nova follows a power law in time with an exponent of \~-0.2
    corecore