359 research outputs found
Detection of CO+ in the nucleus of M82
We present the detection of the reactive ion CO+ towards the prototypical
starburst galaxy M82. This is the first secure detection of this short-lived
ion in an external galaxy. Values of [CO+]/[HCO+]>0.04 are measured across the
inner 650pc of the nuclear disk of M82. Such high values of the [CO+]/[HCO+]
ratio had only been previously measured towards the atomic peak in the
reflection nebula NGC7023. This detection corroborates that the molecular gas
reservoir in the M82 disk is heavily affected by the UV radiation from the
recently formed stars. Comparing the column densities measured in M82 with
those found in prototypical Galactic photon-dominated regions (PDRs), we need
\~20 clouds along the line of sight to explain our observations. We have
completed our model of the molecular gas chemistry in the M82 nucleus. Our PDR
chemical model successfully explains the [CO+]/[HCO+] ratios measured in the
M~82 nucleus but fails by one order of magnitude to explain the large measured
CO+ column densities (~1--4x10^{13} cm^{-2}). We explore possible routes to
reconcile the chemical model and the observations.Comment: 12 pages, 2 figure
The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51
We present the first results from the EMPIRE survey, an IRAM large program
that is mapping tracers of high density molecular gas across the disks of nine
nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions
of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As
expected, dense gas correlates with tracers of recent star formation, filling
the "luminosity gap" between Galactic cores and whole galaxies. In detail, we
show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and
the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on
environment in the galaxy. The sense of the dependence is that high surface
density, high molecular gas fraction regions of the galaxy show high dense gas
fractions and low dense gas star formation efficiencies. This agrees with
recent results for individual pointings by Usero et al. 2015 but using unbiased
whole-galaxy maps. It also agrees qualitatively with the behavior observed
contrasting our own Solar Neighborhood with the central regions of the Milky
Way. The sense of the trends can be explained if the dense gas fraction tracks
interstellar pressure but star formation occurs only in regions of high density
contrast.Comment: 7 pages, 5 figures, ApJL accepte
Full-disc CO(1-0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H conversion factor
Carbon monoxide (CO) provides crucial information about the molecular gas
properties of galaxies. While CO has been targeted extensively,
isotopologues such as CO have the advantage of being less optically
thick and observations have recently become accessible across full galaxy
discs. We present a comprehensive new dataset of CO(1-0) observations
with the IRAM 30-m telescope of the full discs of 9 nearby spiral galaxies from
the EMPIRE survey at a spatial resolution of 1.5kpc. CO(1-0) is
mapped out to and detected at high signal-to-noise throughout our
maps. We analyse the CO(1-0)-to-CO(1-0) ratio () as a
function of galactocentric radius and other parameters such as the
CO(2-1)-to-CO(1-0) intensity ratio, the 70-to-160m flux
density ratio, the star-formation rate surface density, the star-formation
efficiency, and the CO-to-H conversion factor. We find that varies by
a factor of 2 at most within and amongst galaxies, with a median value of 11
and larger variations in the galaxy centres than in the discs. We argue that
optical depth effects, most likely due to changes in the mixture of
diffuse/dense gas, are favored explanations for the observed variations,
while abundance changes may also be at play. We calculate a spatially-resolved
CO(1-0)-to-H conversion factor and find an average value of
cm (K.km/s) over our sample with a standard
deviation of a factor of 2. We find that CO(1-0) does not appear to be a
good predictor of the bulk molecular gas mass in normal galaxy discs due to the
presence of a large diffuse phase, but it may be a better tracer of the mass
than CO(1-0) in the galaxy centres where the fraction of dense gas is
larger.Comment: accepted for publication in MNRA
The influence of cosmic rays in the circumnuclear molecular gas of NGC1068
We surveyed the circumnuclear disk of the Seyfert galaxy NGC1068 between the
frequencies 86.2 GHz and 115.6 GHz, and identified 17 different molecules.
Using a time and depth dependent chemical model we reproduced the observational
results, and show that the column densities of most of the species are better
reproduced if the molecular gas is heavily pervaded by a high cosmic ray
ionization rate of about 1000 times that of the Milky Way. We discuss how
molecules in the NGC1068 nucleus may be influenced by this external radiation,
as well as by UV radiation fields.Comment: 6 pages. Conference proceeding for the workshop on "Cosmic-ray
induced phenomenology in star-forming environments" held in Sant Cugat,
Spain, on April 16-19, 201
Millimeter-Wave Line Ratios and Sub-beam Volume Density Distributions
We explore the use of mm-wave emission line ratios to trace molecular gas
density when observations integrate over a wide range of volume densities
within a single telescope beam. For observations targeting external galaxies,
this case is unavoidable. Using a framework similar to that of Krumholz and
Thompson (2007), we model emission for a set of common extragalactic lines from
lognormal and power law density distributions. We consider the median density
of gas producing emission and the ability to predict density variations from
observed line ratios. We emphasize line ratio variations, because these do not
require knowing the absolute abundance of our tracers. Patterns of line ratio
variations have the prospect to illuminate the high-end shape of the density
distribution, and to capture changes in the dense gas fraction and median
volume density. Our results with and without a high density power law tail
differ appreciably; we highlight better knowledge of the PDF shape as an
important area. We also show the implications of sub-beam density distributions
for isotopologue studies targeting dense gas tracers. Differential excitation
often implies a significant correction to the naive case. We provide tabulated
versions of many of our results, which can be used to interpret changes in
mm-wave line ratios in terms of changes in the underlying density
distributions.Comment: 24 pages, 16 figure, Accepted for publication in the Astrophysical
Journal, two online tables temporarily available at
http://www.astronomy.ohio-state.edu/~leroy.42/densegas_table2.txt and
http://www.astronomy.ohio-state.edu/~leroy.42/densegas_table3.tx
Herschel observations in the ultracompact HII region Mon R2: Water in dense Photon-dominated regions (PDRs)
Mon R2, at a distance of 830 pc, is the only ultracompact HII region (UC HII)
where the photon-dominated region (PDR) between the ionized gas and the
molecular cloud can be resolved with Herschel. HIFI observations of the
abundant compounds 13CO, C18O, o-H2-18O, HCO+, CS, CH, and NH have been used to
derive the physical and chemical conditions in the PDR, in particular the water
abundance. The 13CO, C18O, o-H2-18O, HCO+ and CS observations are well
described assuming that the emission is coming from a dense (n=5E6 cm-3,
N(H2)>1E22 cm-2) layer of molecular gas around the UC HII. Based on our
o-H2-18O observations, we estimate an o-H2O abundance of ~2E-8. This is the
average ortho-water abundance in the PDR. Additional H2-18O and/or water lines
are required to derive the water abundance profile. A lower density envelope
(n~1E5 cm-3, N(H2)=2-5E22 cm-2) is responsible for the absorption in the NH
1_1-0_2 line. The emission of the CH ground state triplet is coming from both
regions with a complex and self-absorbed profile in the main component. The
radiative transfer modeling shows that the 13CO and HCO+ line profiles are
consistent with an expansion of the molecular gas with a velocity law, v_e =0.5
x (r/Rout)^{-1} km/s, although the expansion velocity is poorly constrained by
the observations presented here.Comment: 4 pages, 5 figure
Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-Forming Galaxies
Date of Acceptance: 15/05/2015We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in Star Formation (SF), finding systematic variations in both the apparent dense gas fraction and the apparent SF efficiency (SFE) of dense gas. The latter may be unexpected, given the popularity of gas density threshold models to explain SF scaling relations. We used the IRAM 30-m telescope to observe HCN(1-0) across 29 nearby disk galaxies whose CO(2-1) emission has previously been mapped by the HERACLES survey. Because our observations span a range of galactocentric radii, we are able to investigate the properties of the dense gas as a function of local conditions. We focus on how the IR/CO, HCN/CO, and IR/HCN ratios (observational cognates of the SFE, dense gas fraction, and dense gas SFE) depend on the stellar surface density and the molecular/atomic ratio. The HCN/CO ratio correlates tightly with these two parameters across a range of 2.1 dex and increases in the high surface density parts of galaxies. Simultaneously, the IR/HCN ratio decreases systematically with these same parameters and is ~6-8 times lower near galaxy centers than in the outer regions. For fixed line-mass conversion factors, these results are incompatible with a simple model in which SF depends only on the gas mass above some density threshold. Only a specific set of environment-dependent conversion factors can render our observations compatible with such a model. Whole cloud models, such as the theory of turbulence regulated SF, do a better job of matching our data. We explore one such model in which variations in the Mach number and in the mean density would respectively drive the trends within galaxy disks and the differences between disk and merging galaxies (abridged).Peer reviewe
Photon-Dominated Chemistry in the Nucleus of M82: Widespread HOC+ emission in the inner 650 pc disk
The nucleus of M82 has been mapped in several 3mm and 1mm lines of CN, HCN,
C2H, c-C3H2, CH3C2H, HC3N and HOC+ using the IRAM 30m telescope. These species
have been purposely selected as good tracers of photon-dominated chemistry. We
have measured [CN]/[HCN] ~ 5 in the inner 650 pc galaxy disk. Furthermore, we
have detected the HOC+ 1--0 line with an intensity similar to that of the
H13CO+ 1--0 line. This implies a [HCO+]/[HOC+] ratio of ~40. These results
corroborate the existence of a giant photo-dissociation region (PDR) in the
nucleus of M82. In fact, the low [HCO+]/[HOC+] ratio can only be explained if
the nucleus of M82 is formed by small (r<0.02-0.2 pc) and dense (n ~ a few
10^4--10^5 cm^{-3}) clouds immersed in an intense UV field (G_0 ~ 10^4 in units
of the Habing field). The detection of the hydrocarbons c-C3H2 and CH3C2H in
the nucleus of M82 suggests that a complex carbon chemistry is developing in
this giant PDR.Comment: 4 pages, 2 fig
- …
