76 research outputs found

    Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties

    Get PDF
    A fairly accurate analytical expression of the measured reflectance is established for the general case of a non-Lambertian and nonuniform ground by separating the atmospheric and surface effects. The signal is nearly linear in the function of intrinsic atmospheric reflectance, the actual target reflectance, and two average ground reflectances, angular and spatial, to be defined. Contrast reduction by the atmosphere, defined in the cases of Lambertian and directional ground reflectances, has been evaluated using this formulation

    Global Analysis of Aerosol Properties Above Clouds

    Get PDF
    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate

    Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements

    Get PDF
    AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings

    Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation

    Get PDF
    The NASA moderate resolution imaging spectroradiometer (MODIS) instrument will provide a global and improved source of information for the study of land surfaces with a spatial resolution of up to 250 m

    Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    Get PDF
    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008

    On the determination of a cloud condensation nuclei from satellite : Challenges and possibilities

    Get PDF
    We use aerosol size distributions measured in the size range from 0.01 to 10+ μm during Transport and Chemical Evolution over the Pacific (TRACE-P) and Aerosol Characterization Experiment-Asia (ACE-Asia), results of chemical analysis, measured/modeled humidity growth, and stratification by air mass types to explore correlations between aerosol optical parameters and aerosol number concentration. Size distributions allow us to integrate aerosol number over any size range expected to be effective cloud condensation nuclei (CCN) and to provide definition of a proxy for CCN (CCNproxy). Because of the internally mixed nature of most accumulation mode aerosol and the relationship between their measured volatility and solubility, this CCNproxy can be linked to the optical properties of these size distributions at ambient conditions. This allows examination of the relationship between CCNproxy and the aerosol spectral radiances detected by satellites. Relative increases in coarse aerosol (e.g., dust) generally add only a few particles to effective CCN but significantly increase the scattering detected by satellite and drive the Angstrom exponent (α) toward zero. This has prompted the use of a so-called aerosol index (AI) on the basis of the product of the aerosol optical depth and the nondimensional α, both of which can be inferred from satellite observations. This approach biases the AI to be closer to scattering values generated by particles in the accumulation mode that dominate particle number and is therefore dominated by sizes commonly effective as CCN. Our measurements demonstrate that AI does not generally relate well to a measured proxy for CCN unless the data are suitably stratified. Multiple layers, complex humidity profiles, dust with very low α mixed with pollution, and size distribution differences in pollution and biomass emissions appear to contribute most to method limitations. However, we demonstrate that these characteristic differences result in predictable influences on AI. These results suggest that inference of CCN from satellites will be challenging, but new satellite and model capabilities could possibly be integrated to improve this retrieval

    Aerosol retrieval experiments in the ESA Aerosol_cci project

    Get PDF
    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010–2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer observations for the different versions of each algorithm globally (land and coastal) and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional), which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust)

    The relationship between incident and double-way transmittances : an application for the estimate of surface albedo from satellite over the African Sahel

    No full text
    International audienceThe inference of surface reflectance from satellite observations requires the knowledge of the double-way transmittance through the atmosphere. Since the existing pyranometer networks routinely provide measurements of the incident transmittance over sensitive climatic regions, it would be useful for subsequent applications to relate this ground-based measurement to the corresponding double-way transmittance. A variety of satellite radiance simulations corresponding to clear sky conditions has been made in order to derive a suitable parameterized expression between the two quantities. The accuracy of this expression when making use of additional meteorological observations is shown and discussed. Finally, the derived expression is used to improve a method recently proposed by Pinty et al. for retrieving surface albedo over the African Sahel from METEOSAT radiances

    [Formality of An Eilenberg-moore Spectral Sequence and Application]

    No full text
    • …
    corecore