71 research outputs found

    The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation

    Full text link
    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies.</p

    Does the Angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism modify the response to ACE inhibitor therapy? – A systematic review

    Get PDF
    BACKGROUND: Pharmacogenetic testing to individualize ACE inhibitor therapy remains controversial. We conducted a systematic review to assess the effect modification of the insertion/deletion (I/D) polymorphism of the ACE gene on any outcome in patients treated with ACE inhibitors for cardiovascular and/or renal disease. METHODS: Our systematic review involved searching six electronic databases, then contacting the investigators (and pharmaceutical industry representatives) responsible for the creation of these databases. Two reviewers independently selected relevant randomized, placebo-controlled trials and abstracted from each study details on characteristics and quality. RESULTS: Eleven studies met our inclusion criteria. Despite repeated efforts to contact authors, only four of the eleven studies provided sufficient data to quantify the effect modification by genotypes. We observed a trend towards better response to ACE inhibitors in Caucasian DD carriers compared to II carriers, in terms of blood pressure, proteinuria, glomerular filtration rate, ACE activity and progression to end-stage renal failure. Pooling of the results was inappropriate, due to heterogeneity in ethnicity, clinical domains and outcomes. CONCLUSION: Lack of sufficient genetic data from the reviewed studies precluded drawing any convincing conclusions. Better reporting of genetic data are needed to confirm our preliminary observations concerning better response to ACE inhibitors among Caucasian DD carriers as compared to II carriers

    Immunological Monitoring of Renal Transplant Recipients to Predict Acute Allograft Rejection Following the Discontinuation of Tacrolimus

    Get PDF
    Contains fulltext : 69863.pdf (publisher's version ) (Open Access)BACKGROUND: Transplant patients would benefit from reduction of immunosuppression providing that graft rejection is prevented. We have evaluated a number of immunological markers in blood of patients in whom tacrolimus was withdrawn after renal transplantation. The alloreactive precursor frequency of CD4+ and CD8+ T cells, the frequency of T cell subsets and the functional capacity of CD4+CD25+FoxP3+ regulatory T cells (Treg) were analyzed before transplantation and before tacrolimus reduction. In a case-control design, the results were compared between patients with (n = 15) and without (n = 28) acute rejection after tacrolimus withdrawal. PRINCIPAL FINDINGS: Prior to tacrolimus reduction, the ratio between memory CD8+ T cells and Treg was higher in rejectors compared to non-rejectors. Rejectors also had a higher ratio between memory CD4+ T cells and Treg, and ratios <20 were only observed in non-rejectors. Between the time of transplantation and the start of tacrolimus withdrawal, an increase in naive T cell frequencies and a reciprocal decrease of effector T cell percentages was observed in rejectors. The proportion of Treg within the CD4+ T cells decreased after transplantation, but anti-donor regulatory capacity of Treg remained unaltered in rejectors and non-rejectors. CONCLUSIONS: Immunological monitoring revealed an association between acute rejection following the withdrawal of tacrolimus and 1) the ratio of memory T cells and Treg prior to the start of tacrolimus reduction, and 2) changes in the distribution of naive, effector and memory T cells over time. Combination of these two biomarkers allowed highly specific identification of patients in whom immunosuppression could be safely reduced

    Identification and Visualization of CD8+ T Cell Mediated IFN-Îł Signaling in Target Cells during an Antiviral Immune Response in the Brain

    Get PDF
    CD8+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8+ T cells recognize cells expressing target antigens, become activated, and secrete IFNÎł. However, there are no methods to recognize individual cells that respond to IFNÎł. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNÎł. To identify individual mouse brain cells that respond to IFNÎł we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNÎł signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNÎł to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNÎł. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNÎł by anti-viral CD8+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses

    The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats.

    Get PDF
    Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 \ub5g/2 \ub5l, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit

    Understanding Money-Back Guarantees: Cognitive, Affective, and Behavioral Outcomes

    No full text
    Although money-back guarantees (MBGs) have a long tradition in marketing and retailing practice, a deeper understanding of how consumers value this instrument is still lacking. The results of two experimental studies show that in addition to cognitive effects, MBGs evoke a positive emotional response, thereby increasing consumers’ purchase intentions and willingness to pay a price premium. Moreover, MBGs positively affect consumers’ responses for search and experience goods, although for experience goods, MBGs should be designed with stricter return conditions as compared to MBGs for search goods. The results should help retail managers understand the consumer impact of MBGs, as well as assist them in pricing guaranteed items and designing effective MBGs according to the type of product

    Gene therapy for Parkinson's disease: recent achievements and remaining challenges

    Get PDF
    Gene therapy is the use of nucleic acids as drugs. Thus, ways had to be developed to deliver this new generation of drugs to target tissues. Various viral and non-viral vectors have been engineered to carry potentially therapeutic nucleic acids into diseased organs or target cells. The brain offers a particular challenge for gene delivery to its constituent cells: it is encased by the skull, separated from the general circulation by the blood brain barrier, and made up of mostly non-dividing cells. The skull limits direct injection of vectors into the brain, the blood brain barrier inhibits the easy entry of vectors injected into the bloodstream, and post mitotic target cells restrict what type of vector can be used to deliver genes to the brain. We will discuss the main challenges faced by gene delivery to the brain, i.e. immune responses to the delivery vectors and therapeutic transgenes and length of duration of the therapy specifically as applied to Parkinson's disease. We will also discuss therapeutic strategies, which could be implemented to treat Parkinson's disease, and the models in which they have been tested

    Einfluss der Mycophenolat Mofetil-Dosierung auf die Harnwegsinfektionsrate nach Nierentransplantation

    No full text
    • …
    corecore