1,920 research outputs found

    A Binary Millisecond Pulsar in Globular Cluster NGC6544

    Get PDF
    We report the detection of a new 3.06 ms binary pulsar in the globular cluster NGC6544 using a Fourier-domain ``acceleration'' search. With an implied companion mass of ~0.01 solar masses and an orbital period of only P_b~1.7 hours, it displays very similar orbital properties to many pulsars which are eclipsed by their companion winds. The orbital period is the second shortest of known binary pulsars after 47 Tuc R. The measured flux density of 1.3 +/- 0.4 mJy at 1332 MHz indicates that the pulsar is almost certainly the known steep-spectrum point source near the core of NGC6544.Comment: Accepted by ApJ Letters on 11 October 2000, 5 page

    A Three Micron Survey of the Chamaeleon I Dark Cloud

    Get PDF
    We describe an L-band photometric survey of 0.5 square deg of the Cha I dark cloud. The survey has a completeness limit of L < 11.0. Our survey detects 124 sources, including all known pre-main sequence stars with L < 11. The fraction of sources with near-IR excess emission is 58% +- 4% for K = 9-11. Cha I sources have bluer H-K and K-L colors than pre-main sequence stars in Taurus-Auriga. These sources also have a strong correlation between EW(H-alpha) and K-L. Stars with K-L 0.6 have strong H-alpha emission. Because many Cha I sources are heavily reddened, this division between weak emission T Tauri stars and classical T Tauri stars occurs at a redder K-L than in Taurus-Auriga.Comment: 12 pages of text, 4 figures, and 1 three page table of data modified version adds reference and acknowledgemen

    Spinning Particles, Braid Groups and Solitons

    Get PDF
    We develop general techniques for computing the fundamental group of the configuration space of nn identical particles, possessing a generic internal structure, moving on a manifold MM. This group generalizes the nn-string braid group of MM which is the relevant object for structureless particles. In particular, we compute these generalized braid groups for particles with an internal spin degree of freedom on an arbitrary MM. A study of their unitary representations allows us to determine the available spectrum of spin and statistics on MM in a certain class of quantum theories. One interesting result is that half-integral spin quantizations are obtained on certain manifolds having an obstruction to an ordinary spin structure. We also compare our results to corresponding ones for topological solitons in O(d+1)O(d+1)-invariant nonlinear sigma models in (d+1)(d+1)-dimensions, generalizing recent studies in two spatial dimensions. Finally, we prove that there exists a general scalar quantum theory yielding half-integral spin for particles (or O(d+1)O(d+1) solitons) on a closed, orientable manifold MM if and only if MM possesses a spinc{\rm spin}_c structure.Comment: harvmac, 34 pages, HUTP-93/A037; UICHEP-TH/93-18; BUHEP-93-2

    Role of Electronic Data Exchange in an International Outbreak Caused by Salmonella enterica Serotype Typhimurium DT204b

    Get PDF
    From July through September 2000, patients in five European countries were infected with a multidrug-resistant strain of Salmonella Typhimurium DT204b. Epidemiologic investigations were facilitated by the transmission of electronic images (Tagged Image Files) of pulsed-field gel electrophoresis profiles. This investigation highlights the importance of standardized protocols for molecular typing in international outbreaks of foodborne disease

    Energy Cultures policy briefs

    Get PDF
    Launched in 2012, the Energy Cultures Project is led by the Centre for Sustainability at the University of Otago and aims to develop knowledge and tools to achieve a sustainable energy transition across New Zealand. The Energy Cultures 2 Project focuses on efficiency transitions in three domains: households, businesses and transport systems.These policy briefs are an output of the Energy Cultures 2 research programme, funded 2012-2016 by the Ministry of Business, Innovation and Employment. The purpose of these briefs is to assist with the design of improved policies and practices to promote more efficient energy use in households, businesses and transport in New Zealand

    MBM 12: young protoplanetary discs at high galactic latitude

    Full text link
    (abridged) We present Spitzer infrared observations to constrain disc and dust evolution in young T Tauri stars in MBM 12, a star-forming cloud at high latitude with an age of 2 Myr and a distance of 275 pc. The region contains 12 T Tauri systems, with primary spectral types between K3 and M6; 5 are weak-line and the rest classical T Tauri stars. We first use MIPS and literature photometry to compile spectral energy distributions for each of the 12 members in MBM 12, and derive their IR excesses. The IRS spectra are analysed with the newly developed two-layer temperature distribution (TLTD) spectral decomposition method. For the 7 T Tauri stars with a detected IR excess, we analyse their solid-state features to derive dust properties such as mass-averaged grain size, composition and crystallinity. We find a spatial gradient in the forsterite to enstatite range, with more enstatite present in the warmer regions. The fact that we see a radial dependence of the dust properties indicates that radial mixing is not very efficient in the discs of these young T Tauri stars. The SED analysis shows that the discs in MBM 12, in general, undergo rapid inner disc clearing, while the binary sources have faster discevolution. The dust grains seem to evolve independently from the stellar properties, but are mildly related to disc properties such as flaring and accretion rates.Comment: 14 pages, accepted by Astronomy and Astrophysic

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    A Near-Infrared Imaging Survey of the Chamaeleon I Dark Cloud

    Get PDF
    We describe a near-infrared imaging survey covering approximately 1 square deg of the Chamaeleon I dark cloud. The survey is complete for K < 15.0, H < 16.0, and J < 16.5, roughly two magnitudes more sensitive than previous large scale surveys. We use the large number of background stars detected to derive an accurate near-infrared extinction law for the cloud and select new candidate members with near-infrared color excesses. We list about 100 candidates of the cloud with K > 12.0, based on their positions in the J-H, H-K color-color diagram. These new stars have low luminosities (K > 12 -- 16, H-K > 0.5 -- 1.5) and may have masses close to or even below the hydrogen burning limit.Comment: 33 pages (including tables), 8 figure

    De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter

    Full text link
    When de Sitter first introduced his celebrated spacetime, he claimed, following Schwarzschild, that its spatial sections have the topology of the real projective space RP^3 (that is, the topology of the group manifold SO(3)) rather than, as is almost universally assumed today, that of the sphere S^3. (In modern language, Schwarzschild was disturbed by the non-local correlations enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not have been accepted as such by de Sitter. There is no real basis within classical cosmology for preferring S^3 to RP^3, but the general feeling appears to be that the distinction is in any case of little importance. We wish to argue that, in the light of current concerns about the nature of de Sitter space, this is a mistake. In particular, we argue that the difference between "dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of understanding horizon entropies. In the approach to de Sitter entropy via Schwarzschild-de Sitter spacetime, we find that the apparently trivial difference between RP^3 and S^3 actually leads to very different perspectives on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers finally fixed, JHEP versio

    A new mode of chemical reactivity for metal-free hydrogen activation by Lewis acidic boranes

    Get PDF
    We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of “frustrated Lewis pairs” (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly‐hindered boranes: tris(3,5‐dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway for the first time. This radical–based, redox pathway involves homolytic cleavage of H2, in contrast to conventional models of FLP chemistry which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids
    corecore