149 research outputs found

    Multiferroic behavior in the new double-perovskite Lu2_2MnCoO6_6

    Full text link
    We present a new member of the multiferroic oxides, Lu2_2MnCoO6_6, which we have investigated using X-ray diffraction, neutron diffraction, specific heat, magnetization, electric polarization, and dielectric constant measurements. This material possesses an electric polarization strongly coupled to a net magnetization below 35 K, despite the antiferromagnetic ordering of the S=3/2S = 3/2 Mn4+^{4+} and Co2+^{2+} spins in an \uparrow \uparrow \downarrow \downarrow configuration along the c-direction. We discuss the magnetic order in terms of a condensation of domain boundaries between \uparrow \uparrow and \downarrow \downarrow ferromagnetic domains, with each domain boundary producing a net electric polarization due to spatial inversion symmetry breaking. In an applied magnetic field the domain boundaries slide, controlling the size of the net magnetization, electric polarization, and magnetoelectric coupling

    Genetic evidence of two sibling species within the Contracoecum ogmorhini Johnson & Mawson 1941 complex (Nematoda; Anisakidae) from otariid seals in boreal and austral regions

    Get PDF
    Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region, respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and 6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei = 0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini (sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym) and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given

    Dpes massless QCD have vacuum energy?

    Full text link
    It is widely thought that this question has a positive answer, but we argue that the support for this belief from both experiment and theory is weak or nonexistent. We then list some of the ramifications of a negative answer.Comment: 8 pages, no figures, version to appear in NJ

    Spiral spin-liquid and the emergence of a vortex-like state in MnSc2_2S4_4

    Full text link
    Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2_2S4_4 by directly observing the 'spiral surface' - a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the effectiveness of the J1J_1-J2J_2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2_2S4_4, and also demonstrate a new way to realize a magnetic vortex lattice.Comment: 10 pages, 11 figure

    The discovery of an evolving dust scattered X-ray halo around GRB 031203

    Full text link
    We report the first detection of a time-dependent, dust-scattered X-ray halo around a gamma-ray burst. GRB 031203 was observed by XMM-Newton starting six hours after the burst. The halo appeared as concentric ring-like structures centered on the GRB location. The radii of these structures increased with time as t^{1/2}, consistent with small-angle X-ray scattering caused by a large column of dust along the line of sight to a cosmologically distant GRB. The rings are due to dust concentrated in two distinct slabs in the Galaxy located at distances of 880 and 1390 pc, consistent with known Galactic features. The halo brightness implies an initial soft X-ray pulse consistent with the observed GRB.Comment: 4 pages. 4 figures. Accepted for publication in ApJ Letter

    Zeros of regular functions of quaternionic and octonionic variable: a division lemma and the camshaft effect

    Get PDF
    We study in detail the zero set of a regular function of a quaternionic or octonionic variable. By means of a division lemma for convergent power series, we find the exact relation existing between the zeros of two octonionic regular functions and those of their product. In the case of octonionic polynomials, we get a strong form of the fundamental theorem of algebra. We prove that the sum of the multiplicities of zeros equals the degree of the polynomial and obtain a factorization in linear polynomials.Comment: Proof of Lemma 7 rewritten (thanks to an anonymous reviewer

    pygwb: Python-based library for gravitational-wave background searches

    Full text link
    The collection of gravitational waves (GWs) that are either too weak or too numerous to be individually resolved is commonly referred to as the gravitational-wave background (GWB). A confident detection and model-driven characterization of such a signal will provide invaluable information about the evolution of the Universe and the population of GW sources within it. We present a new, user-friendly Python--based package for gravitational-wave data analysis to search for an isotropic GWB in ground--based interferometer data. We employ cross-correlation spectra of GW detector pairs to construct an optimal estimator of the Gaussian and isotropic GWB, and Bayesian parameter estimation to constrain GWB models. The modularity and clarity of the code allow for both a shallow learning curve and flexibility in adjusting the analysis to one's own needs. We describe the individual modules which make up {\tt pygwb}, following the traditional steps of stochastic analyses carried out within the LIGO, Virgo, and KAGRA Collaboration. We then describe the built-in pipeline which combines the different modules and validate it with both mock data and real GW data from the O3 Advanced LIGO and Virgo observing run. We successfully recover all mock data injections and reproduce published results.Comment: 32 pages, 14 figure

    Magnetic Frustration Driven by Itinerancy in Spinel CoV2O4

    Get PDF
    Localized spins and itinerant electrons rarely coexist in geometrically-frustrated spinel lattices. They exhibit a complex interplay between localized spins and itinerant electrons. In this paper, we study the origin of the unusual spin structure of the spinel CoV2O4, which stands at the crossover from insulating to itinerant behavior using the first principle calculation and neutron diffraction measurement. In contrast to the expected paramagnetism, localized spins supported by enhanced exchange couplings are frustrated by the effects of delocalized electrons. This frustration produces a non-collinear spin state even without orbital orderings and may be responsible for macroscopic spin-glass behavior. Competing phases can be uncovered by external perturbations such as pressure or magnetic field, which enhances the frustration

    Dissipative and Non-dissipative Single-Qubit Channels: Dynamics and Geometry

    Full text link
    Single-qubit channels are studied under two broad classes: amplitude damping channels and generalized depolarizing channels. A canonical derivation of the Kraus representation of the former, via the Choi isomorphism is presented for the general case of a system's interaction with a squeezed thermal bath. This isomorphism is also used to characterize the difference in the geometry and rank of these channel classes. Under the isomorphism, the degree of decoherence is quantified according to the mixedness or separability of the Choi matrix. Whereas the latter channels form a 3-simplex, the former channels do not form a convex set as seen from an ab initio perspective. Further, where the rank of generalized depolarizing channels can be any positive integer upto 4, that of amplitude damping ones is either 2 or 4. Various channel performance parameters are used to bring out the different influences of temperature and squeezing in dissipative channels. In particular, a noise range is identified where the distinguishability of states improves inspite of increasing decoherence due to environmental squeezing.Comment: 12 pages, 4 figure

    Tumor Angiogenesis and Vascular Patterning: A Mathematical Model

    Get PDF
    Understanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In this paper we present a multi-scale phase-field model that combines the benefits of continuum physics description and the capability of tracking individual cells. The model allows us to discuss the role of the endothelial cells' chemotactic response and proliferation rate as key factors that tailor the neovascular network. Importantly, we also test the predictions of our theoretical model against relevant experimental approaches in mice that displayed distinctive vascular patterns. The model reproduces the in vivo patterns of newly formed vascular networks, providing quantitative and qualitative results for branch density and vessel diameter on the order of the ones measured experimentally in mouse retinas. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of different parameters in this process, hence underlining the necessary collaboration between mathematical modeling, in vivo imaging and molecular biology techniques to improve current diagnostic and therapeutic tools
    corecore