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Abstract

We study in detail the zero set of a slice regular function of a quater-
nionic or octonionic variable. By means of a division lemma for convergent
power series, we find the exact relation existing between the zeros of two
octonionic regular functions and those of their product. In the case of
octonionic polynomials, we get a strong form of the fundamental theorem
of algebra. We prove that the sum of the multiplicities of zeros equals the
degree of the polynomial and obtain a factorization in linear polynomials.
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1 Introduction

Let H denote the skew field of quaternions over R. Recently, Gentili and Struppa
[13] [15] introduced the notion of slice regularity (or Cullen regularity) for func-
tions of a quaternionic variable. This notion do not coincide with the classical
one of Fueter regularity (we refer the reader to [30] and [19] for the theory of
Fueter regular functions). In fact, the set of slice regular functions on a ball
Bpr centered in the origin of H coincides with that of all power series ZZ w'a;
that converges in Bgr. In particular, all the standard polynomials Z?:o wha;
with right quaternionic coefficients, which fail to be Fueter regular, define slice
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regular functions on the whole space H. The class of slice regular functions
contains also the radially holomorphic functions introduced by Fueter (cf. [19,
§11]). Such functions fix every complex plane generated by the reals and by
a unit imaginary quaternion, while the slice regular functions do not need to
fulfil this property. Actually, radially holomorphic functions correspond to the
very special class of those slice regular functions, which can be expanded into
power series with real coefficients. The notion of slice regularity was extended
to functions of an octonionic variable in [14} [12] and to functions with values in
a Clifford algebra in [17] @].

In this paper, we study in detail the zero set of a slice regular function. For
simplicity, in the sequel, we use the terminology “regular function” in place of
“slice regular function”. We obtain by different techniques some properties al-
ready known (cf. [24] [14] [15] [11], [16] [18]) and we extend others to the octonionic
case. We find the exact relation existing between the zeros of two octonionic
regular functions and those of their product. In the case of octonionic poly-
nomials, we obtain a strong form of the fundamental theorem of algebra. The
main tool we use is a division lemma, which generalizes to octonionic power
series a result proved by Beck [I] for quaternionic polynomials and by Serddio
[27] for octonionic polynomials. In the simpler case of regular polynomials and
convergent power series with real (i.e. central) coefficients, the properties of the
zero set have been studied also by other authors (cf. [5]).

We describe in more details the structure of the paper. In Section 2 we
recall some basic definitions and prove the division lemma (Lemma [). Given
a regular function f and an octonion «, we can associate to f a remainder,
which is a linear or constant regular polynomial. This remainder describes
completely the intersection of the zero set V(f) of f with the conjugacy class
of . We can then obtain easily a structure theorem for V(f) (Theorem [G]).
This result was proved for quaternionic polynomials by Pogorui and Shapiro
[24], for quaternionic regular functions by Gentili and Stoppato in [1I] and it
was extended to octonionic regular functions in [I8]. The division lemma and
the concept of normal series associated to a regular function (see Section 2] for
precise definitions) suggest the definition of the multiplicity of a zero of a regular
function. Our definition is equivalent on quaternionic polynomials with the one
given in [2] and in [16].

In Section[3], we describe the zeros of the product f*g of two regular functions
in terms of the zeros of f and g. We prove (Lemma [7)) that the normal series of
a regular function is multiplicative, a result that is non—trivial in the octonionic
case. An immediate consequence is that the conjugacy classes of the zeros of
f * g are exactly those containing zeros of f or g. The precise relation between
such zeros is stated in Theorem[@ We call this relation the “camshaft effect”. In
the associative case, it reduces to known results (cf. [LI] for quaternionic regular
functions and [22] 29] for polynomials).

Section Ml contains some applications of the preceding results to regular poly-
nomials. The fundamental theorem of algebra was proved by Niven [23] for
standard quaternionic polynomials. It was extended to other polynomials over
H by Eilenberg and Niven [7] and to octonionic polynomials by Jou [2I]. In



the book [8, pp. 308ff], Eilenberg and Steenrod gave a topological proof of the
theorem valid for a class of real algebras including the complex numbers, the
quaternions and the octonions. See also [31], [25] and [I8] for other proofs.

In this context, our aim is a strong form of the fundamental theorem, in
which a formula for the sum of the multiplicities of zeros is achieved. Gordon
and Motzkin [20] proved, for polynomials on a (associative) division ring, that
the number of conjugacy classes containing zeros of f cannot be greater than
the degree n of f. This estimate was improved on the quaternions by Pogorui
and Shapiro [24]: if f has m spherical zeros and ! non—spherical zeros, then
2m + 1 < n. Gentili and Struppa [16] showed that, using the right definition
of multiplicity, the number of zeros of f equals the degree of the polynomial.
We generalize this strong form to the octonions (Theorem [IT]), giving a proof
inspired by the simple argument used in [24]. From this result and the division
lemma, we get a factorization lemma for regular polynomials (Lemma [I2)) and
some sufficient conditions for the finiteness of V'(f).

The definitions and results are stated over octonions only, but they remain
valid over quaternions as well. Since H can be identified with a real subalgebra
of the octonions, the corresponding statements for quaternions can be obtained
directly from their octonionic version by specializing coefficients and variables.

2 Division of regular series and multiplicity of
Z€eros

Let O be the non—associative division algebra of octonions (also called Cayley
numbers). We refer to [26]22] [6] for the main properties of the algebras H and O.
We recall that @ can be obtained from H by the Cayley—Dickson process. Any
z € O can be written as z = z1 + z2k, where z1,20 € H and k is a fixed
imaginary unit of @. The addition on O is defined componentwise and the
product is defined by

zy = (1 + 22k)(y1 + y2k) = 1y1 — Gox2 + (2201 + Yoz1)k.

Let {1,4,7,ij} denote a real basis of H. Then a basis of the real algebra O is
formed by {1,1, 7,14, k, ik, jk, (ij)k}.

Let Br be the open ball of O centered in the origin with (possibly infinite)
radius R. Let f : B — O and g : Bg — O be regular functions with
series expansions f(w) = 3, w'a; and g(w) = Y w’b;. The usual product of
polynomials, where w is considered to be a commuting variable (cf. for example
[22] and [0} [I0]), can be extended to power series, and hence to slice regular
functions (cf. 11}, [16]). Recall that f * g is the regular function defined on Bg

by setting
(f*g)(w) = w” ( Zi+j:k aibj)-

We denote by f the regular function defined on Bg by flw) == >, wia;. If
f has real coefficients, i.e. f = f, we will say that f is real. In this case,



(f*xg)(a) = f(a)g(a) for every g and every a € O and we will write fg in place
of f * g. Moreover, if f is real then (f xg)*xh = (fg) * h = f(g* h) for every
g,h, and f * g is equal to fg.

We denote by N(f) the normal series (or symmetrized series) of f defined
by

N(f)=fxf=Fxf
We remark that N(f) is regular and real on Bp.
Let o € @. We denote the trace tr(a) = a« + @ of « also by ¢, the squared
norm of o by n, and define the real polynomial A, called characteristic poly-
nomial of o, by

Ap(w) == Nw —a) = (w—a)* (w—a) =w® —w -ty + nq.

It is well-known (cf. [27]) that « is conjugate to an octonion § if and only if
A, = Ag. Indicate by S, the conjugacy class of a: Sq == {8 € O | f =
Re(a) + [Im(a)|I,I € S}, where S = {I € O | I? = —1} is the sphere of
imaginary units. Note that S, reduces to the point {«} when « is real and it is
a six—dimensional sphere when « is non—real.

We denote by V(f) the zero set of f. If « € V(f) is real, we call « a real
zero of f. If a is non-real and S, C V(f), we call « a spherical zero of f.
Otherwise, we call « € V(f) an isolated zero of f. This terminology is justified
by Theorem [ below.

Let us present our division lemma.

Lemma 1. Let f : B — O regular and let « € Br. The following statements
hold.

(1) There exist, and are unique, a regular function g : B — O and an
octonion r € O such that f(w) = (w — ) x g(w) + r.

(2) Let a € O be non-real. There exist, and are unique, a regular function
h: B — O and octonions a,b € O such that f(w) = (Ay h)(w)+wa+b.

Proof. (1) Let us prove the existence of g and of r. First, observe that, if such
g and r exist, then r must be equal to f(«). In fact, it is easy to see that the
value of the function (w — @) * g(w) in « is zero. Assume that f =, w'a; has
positive convergence radius R. Recall that

—1

R= (limsup \"/|an|) .
n—-+4oo

Let o € Bg. If a = 0, then we can write f = w (E:;Og wiaiH) + ag. Suppose

a # 0. A formal series computation imposes to define the coefficients of the

power series g = Y w"b,, as follows:

n

—+oo
by :=a 1" f(a)—Zajaj =a 1" Z da;

7=0 j=n+1



for each n € N. Let us show that the series g has radius of convergence at least R.
Since |a| < R, limsup,,_,, o, ¥/|an| < |a|~*. This implies that, for every fixed p
with |a| < p < R, there exists an integer n, such that the inequality |a;| < p~7
is satisfied for every j > n,. Let x € Br and let p be chosen in such a way that
max{|a|, |z|} < p < R. Then, for every n > n,, it holds:

+o00 too
(@b | < J2]" (o] < [z T D ol ag] < fal"lal T Y Jafp
j=n+1 j=n+1

n+1 n
~ oo (1) (M)
p 1—lal/p p) p—laf

Therefore, the power series ) w™b, converges at every € Bg. It remains
to prove the uniqueness of g and of . We have just seen that r must be
equal to f(«) so the octonion r is uniquely defined by f and a. If f(w) =
(w—a)*g(w)+r=(w—a)*g(w)+r, then (w— ) * (g(w) — ¢’'(w)) =0 and
this easily implies that g = ¢'.

(2) Let a be non-real. Using the first part twice, we get s € O and a regular
function h on Bpg such that

flw)=(w—-a)*xglw)+r=(w—a)*((w—a)*h(w)+s)+r
= (Agh)(w) + ws — as + 7.

To prove uniqueness, assume that f(w) = Ash + wa +b = Ak +wad + V.
Then f(a) = aa+b=ad +¥, f(@) = aa+b=ad + ¥, from which we get
( —a)(a —a’) =0 and then a = d’, b = ¥'. Finally, Ajh = AR/ gives h = h/
on Bg \ S,. By a density argument, h and ' must coincide everywhere. O

Remark 1. As a by-product of the proof of the preceding theorem, we obtain
that, if f is a regular octonionic polynomial of degree n > 0, then g is a regular
octonionic polynomial of degree n — 1.

Definition 1. Let the reqular functions g, h and the octonions r, a, b be as above.
If « is real, we call r the remainder of f with respect to a and the function g
the quotient of f w.r.t. a. If a is non—real, we call remainder of f with respect
to a the octonionic polynomial defined by wa+b and quotient of f w.r.t. a the
function h. Note that they depend only on the conjugacy class S, of a. In any
case, we will denote the remainder by rq(f).

If f isreal, then the coefficients of the quotient function and of the remainder
are real. This fact is a consequence of the uniqueness of quotient and remainder:

(w—a)g+r=f=f=(w—-a)g+7 (areal)

or
Ash+wa+b=f=f=A,h+wa+b (anon-real)
imply g=g,r=7 h=nh,a=aand b=>b.
As a first application of Lemma [I, we obtain:



Corollary 2. Let ro(f) be the remainder of f with respect to «. The following
statements hold.

(1) Let « be real. Then « is a zero of f if and only if ro(f) = 0; that is,
w—alf.

(2) Let a be non—real and let ro(f)(w) =wa+b. Then we have:

(i) « is a spherical zero of [ if and only if a =0 =b; that is, A, | f.
(i) « is an isolated zero of f if and only if a # 0 and o = —ba™!.

In particular, either S, C V(f) or So NV (f) is empty or S, NV (f)
consists of a single point. The latter situation occurs if and only if a # 0
and —ba~1 € S,.

Proof. By using Lemma [I we can follow the same lines of proof as in the
polynomial case (cf. [27], §3]).

If o € R, the statement is trivial, since f(a) = ro(f).

Now assume that « is non-real. If r,(f) =0, i.e. a =b =0, then f(5) =
An(B) - h(B) = 0 for every B € S,. If a # 0 and o = —ba™!, then f(a) =
Ay(a) - h(a) = 0. If S, contains two zeros 3 and 7 of f, then the equality

Ao(B)-h(B)+Ba+b=f(B)=0=f(y) =Aa(y) -h(y) +va+Db

gives fa = vya, since A, vanishes on 3,7 € S,. If B # ~, then it must be
a=>b=0. O

If fis real, then ro(f) = wa + b with a,b real. Therefore —ba~' € R and f
has no isolated (non-real) zeros. This means that the zeros of f are all real or
spherical and V(f) is the union of the spheres S, with a € V(f) (cf. [3]).

If f differs from a real g by a constant non-real octonion, then we have the
opposite situation: f can have only isolated zeros. This property was proved
for regular polynomials over H in [22] §16.19].

Proposition 3. Let f(w) = g(w) + ao be a regular function on Br. Assume
that g is real and ag € O is non—real. Then, if V(f) is not empty, its elements
are isolated zeros of f contained in the complex plane generated by 1 and ag.

Proof. Let oo € V(f). Since ag = —g(«a) is non-real, also @ must be non-real.
From the division lemma (Lemma [} applied to g, we get: g(w) = A h(w) +
wa + b, with real a,b. Then r,(f) = wa + b+ ap and «a cannot be spherical.
Otherwise, it would be ag = —b. Therefore, « = —(b + ag)a™" is an isolated
zero of f belonging to the complex plane generated by 1 and ayg. O

We still get the nonexistence of spherical zeros under a weaker condition

on f.

Proposition 4. Let f(w) = g(w) + way + ag be a regular function on Bg.
Assume that g is real and either ag or ay is non—real. Then f has no spherical
Zeros.



Proof. We proceed as before. Assume that V(f) # 0. Let « € V(f). Then
ro(f) = w(a+a1)+b+ag, with a,breal. Then « cannot be spherical. Otherwise,
it would be ag = —b and a1 = —a. O

If « is real and f(w) = (w — a) g(w) + r for some regular function g and

r € Q, then ro(f) =7, ro(f) =7 and
N(f) = (w =)’ N(g) + (w — a)(g*7 +7*g) + n,. (1)

It follows that 7o (N(f)) = n,. If o is non-real and f has remainder r,(f)(w) =
wa + b, then we have that r,(f)(w) = wa + b and hence

ra(N(f)) = ra(f * f)(w) = w(ab +ba + tana) +ny — nana.
The latter equality follows immediately from the following fact

(wa +b) * (wa+b) = w?ng +w(ab+ ba) +np =
(Ay + Wty — Ng)ng + w(ab + ba) 4 np.

Corollary 5. Given o € Q, the following statements are equivalent:
(1) Sa NV (f) is non—empty.
(2) Sa NV(N(f)) is non—empty.
(3) Aa [ N(f).

In particular, we have that

VN = | Sa

aeV(f)

Proof. If « is real and 7o (f) = r, then 7o (N(f)) = n, = 0 if and only if r = 0.
If this is the case, Eq. (@) implies that A, = (w — «)? divides N(f). If a is
non-real, then A, | N(f) if and only if 7, (N(f)) = 0; that is,

ab+ba+tong =0, np—nang =0. (2)

If a =b =0, then S, C V(f) and equations () are trivial. If @ # 0 and
B=—ba~t €S, NV(f), then tyn, = tsn, = Baa+ aal = —ba — ab. Moreover,
NaNa = Nang = np and equations (2)) are satisfied.

Conversely, suppose that equations (2]) are satisfied. If a = 0, then b = 0 and
hence S, C V(f). Let a # 0. Define the octonion 3 := —ba~!. Proceeding as
above, we obtain that t,n, = tgn, and non, = ngn, or, equivalently, t, = tg
and n, = ng. It follows that 3 € S, NV (f). Since N(f) is real, its zeros are all

real or spherical, so V(N(f)) is equal to U, ey () Sa- O

From the preceding corollaries, we immediately get a new proof of the follow-
ing result. It was proved for quaternionic polynomials by Pogorui and Shapiro
[24], for quaternionic regular functions by Gentili and Stoppato in [1I] and it
was extended to octonionic regular functions in [I§].



Theorem 6. Let f : Bp — O be a reqular function, which does not vanish on
the whole Br. For each I € S, denote by C; the complex plane of O generated
by 1 and I; that is, C; := {x +yI € O|xz,y € R}. The following statements
hold.

(1) ForallT€S,Crn{ ) Sa is closed and discrete in C; N Bg.

acV

(2) For each B € Uyev(y)Sa, either Sg C V(f) or SNV (f) consists of a
single point.

Proof. Since N(f) is regular on Bg, and then holomorphic on C; N B, its
zero-set Cr N Uyev(s)Sa = CrNV(N(f)) is closed and discrete in C; N Bg.
The second statement follows from Corollary O

Definition 2. Given a non-negative integer s and an octonion « in V(f), we
say that o is a zero of f of multiplicity s if A% | N(f) and AL N(f). We
will denote the integer s, called multiplicity of o, by m(c).

In the case of a a real element, this condition is equivalent to (w — a)® | f
and (w—a)**t1 ¢ f. If o is a spherical zero, then A, divides f and f. Therefore
my(a) is at least 2. If my(a) = 1, o is called a simple zero of f. The reader
observes that the multiplicity of o depends only on the conjugacy class S, of a.

Remark 2. The preceding definition is equivalent on quaternionic polynomials
with the one given in [2] and in [I6].

3 Zeros of products: the “camshaft effect”

Let f,g: Br — O be regular functions. The aim of this section is to describe
the zeros of f % ¢ in terms of the zeros of f and of g. The following result
is non-trivial and very important in the octonionic setting. It was proved by
Serodio ([28, Theorem 10]) in the particular case in which g is a constant.

Lemma 7. It holds:
N(f*g)=N(f)N(g).

Proof. Let g be fixed. We must prove that the two real quadratic forms

Qi(f):=(f*g)*(@=*f) and Q2(f):=(f*f)(g*9)

coincide. By polarization, the equality of ; and Q3 is equivalent to the equality
of the R-bilinear symmetric forms

Bi(f1, f2) == (f1 % g) * (g * f2) + (f2 % g) = (7 * f1),
Ba(f1, f2) = (f1 * f2)N(g9) + (f2* f1)N(g).

By linearity, it is sufficient to prove that By and Bs coincide for fi = wa,
f2 = wib, with a,b € Q. Since B, (w'a,w’b) = w'™ * B,(a,b) (a = 1,2), it
suffices to prove that B (a,b) = Ba(a,b) for every a,b € O, which is equivalent



to the equality Q1(a) = Q2(a) for every a € @. Now we can fix a € Q and apply
the same argument to the quadratic forms

Qi(9) :==(axg)x(g=a) and Q5(g) = |al*(g*9).

We get that these two forms coincide if and only if Q(b) = Q4(b) for every
b € 0. Therefore it suffices to prove the equality

(ab)(ba) = |a|?* |b|*> for every constant a,b € Q.

In every alternative algebra the subalgebra generated by two elements is asso-
ciative. Therefore (ab)(ba) = a(bb)a = |a|? |b|?>. This completes the proof. [

Corollary 8. It holds:
U s« = U s
€V (f*g) a€V(f)uV(g)

or, equivalently, given any o € O, V(f % g) NSy is non—empty if and only if
(V(f)UV(g))NSy is non—empty. In particular, the zero set of f*g is contained
in the union of spheres Uaev(f)uv(g) Sa-

Proof. By combining Corollary Bl and Lemma [ we get:

Uaev(egSa = VIN(fxg))=V(N(f))UV(N(g9) =
= (UaGV(f) Sa) U (UaGV(g) Sa) = UaEV(f)UV(g) Sa-
Since V(f xg) C V(N(f % g)), the proof is complete. O

Now we give a precise description of the zeros of the product f * g. Thanks
to Corollary [§ it is sufficient to analyze separately the spheres S, containing
zeros of f or of g.

Firstly, we consider the significant case: the non-real zeros.

Let o € O be non-real. Suppose that r,(f)(w) = wa + b and 7,(g)(w) =
wc + d for some a,b,c,d € Q. Then we have that

ro(f*g)(w) = w(ad +be+toac) +bd —ngac = (ro(f) *ra(g))(w) — Agac. (3)
The latter assertion is an immediate consequence of the following fact

(wa +b) * (we+d) = w?(ac) + w(ad + be) + bd =
(Aq + wty — ny)(ac) + w(ad 4 be) + bd

Thanks to Eq. @), we obtain:

Theorem 9 (the camshaft effect). The following statements hold.



(1) Suppose f has an isolated zero v in S, of multiplicity s and g is nowhere
zero on S,. Then f * g has an isolated zero o' in S, of multiplicity s,
ad + (aa)c # 0 and it holds:

o = ((aa)d + nqac) (ad + (aa)c) .

In particular, if (ca)d = a(ad) and nqac = a((aa)c) (for example, if a is
real or if a,b, c,d belong to an associative subalgebra of Q), then o/ = a.

(2) Suppose f is nowhere zero on S, and g has an isolated zero B in S, of
multiplicity t. Then f x g has an isolated zero 3" in S, of multiplicity t,
be + a(fc) # 0 and it holds:

B8 = (b(Be) + naac) (be+ a(Be)) .

In particular, if b(Bc) = (bB)c and a(Bc) = (aB)c (for example, if c is real
or if a,b, c,d belongs to an associative subalgebra of Q), then we have that

B =(b+aB)Bb+ap) "

(3) Suppose [ has an isolated zero « in S, of multiplicity s and g has an
isolated zero B in Sy of multiplicity t. Then, if a(Bc) = (@a)c, then a is a
spherical zero of f*g of multiplicity s+t. Otherwise, f*g has an isolated
zero v in S, of multiplicity s + t such that

v = (—(aa)(Bc) + nqac) (—a(fBe) + (da)c)_l )

(4) Let v be a spherical zero of | or of g, and let s, t be the respective multiplic-
ities of a (possibly zero). Then « is a spherical zero of f g of multiplicity
s+t.

Proof. In the following, we will use the fact that, in any alternative quadratic
algebra, the trace is associative and commutative (cf. e.g. [6], §9.1.2]).

First, we prove the theorem without the part concerning multiplicities.

(1) In this case a # 0 and aa + b = 0 (cf. Corollary 2(2)(ii)). If ¢ = 0, then
d # 0 (otherwise g would vanish on the whole sphere S,). Then ad + (@a)c =
ad # 0 and Eq. @) gives the isolated zero o/ = —(bd)(ad)~! = ((aa)d)(ad)~! of
f*g. If ¢ #0, then ad + (@a)c cannot vanish. In fact, if it were ad 4 (@a)c =0,
then we would have that @ = —((ad)c™!)a™!. But then tr(a) = tr(—dc™!)
and |a| = | — dc™!|. This would mean that 3 = —dc™! belongs to S, NV (g),
contradicting our assumptions.

Corollary Bl tells that S, must contain a zero of f*g. From Corollary 2f2)(ii)
and Eq. @), this zero must be

o = (=bd + ngac)(ad + be + toac) ™t
Note that the octonion ad + bc + thoac does not vanish, since it is equal to

ad — (aa)e + (tqa)e = ad — (aa)e + (aa)c + (@a)e = ad + (@a)e. We conclude
that o/ = ((aa)d + nac)(ad + (@a)c) 1.
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(2) This second case is similar to the first one. Now ¢ # 0 and B¢+ d = 0.
If a = 0, then b # 0 and bc + a(Bc) = be # 0. From Eq. (@) we get the isolated
zero 3 = (b(Bc))(be)~ L. If a does not vanish, then it still holds bc 4 a(Bc) # 0.
In fact, if this were not true, we would have that 3 is conjugate to —ba~! and
therefore —ba~! € S, NV (f). By using Corollary 8, Corollary 2(2)(ii), 3c = —d
and t, = tg, we obtain the unique zero

B = (=bd + naac)(ad + be + toac) ™t = (b(Bc) + naac)(be + a(fc)) !

of f+xgin S,.
(3) In this case, a,c # 0, b = —aa, d = —fc. From Eq. @), we get the
remainder:

(—a(Be) — (aa)c + tyac) + (aa)(Be) — nqac
(—a(Bc) + (@a)c) + (wa)(Be) — nqac.

If a(Bc) = (aa)c, then rq(f * g) is constant. On the other hand, by Corollary 8]
ro(f * g) vanishes on some point of S, and hence it is null. It follows that f g
has « as a spherical zero. Instead, if a(8¢) # (a@a)c, then f * g has the isolated
zero

7 = (~(aa)(Be) + nqac) (—a(Be) + (aa)e) "

(4) If the real polynomial A, divides f or g, then it divides f % g. The
conclusion follows from Corollary 2(2)(i).

Now we consider multiplicities. If « is a zero of f of multiplicity s and
B €S, is a zero of g of multiplicity ¢, then N(f) = A%hy and N(g) = AL hs,
where h; and hg real regular functions such that r,(h1) = wa + b # 0 and
ro(h2) = we+d # 0. From Lemma [T it follows that N(f * g) = A%t (hihg).
We have to prove that ASTHL 4 N(f x g). By a density argument, we see that
this is equivalent to show that A, { hihsg, i.e. that the remainder 7o (hihs) is
not zero. From Eq. @), 7o (h1h2) is zero if and only if

ad + bc + tyac = bd — nyac = 0. (4)

Since a, b, c,d are real, Eq. (@) implies that a(d + ac)(d + @c) = 0. But this
cannot happen since « is non—real and a # 0. O

Example 1. For every non—real a € O, & is conjugated to a. Let a be such that
a=aaa™!. If f(w) = wa—aa, g(w) = w—a, then fxg = w?a—w(aa+aa)+aac
and V(f) =V (g) = {a} while V(f * g) =S, (see Theorem [03)).

Remark 3. In the octonionic case, the camshaft effect appears even if one of
the functions is constant: the zeros of f and of f * ¢ (¢ € O a constant) can
be different (cf. Serodio [27] when f is a polynomial). For example, let f(w) =
wi — jJ, g(w) = k. Then fx*g = w(ik) — jk has —ij as unique zero, while
V(f) = {ij}-

It remains to consider real zeros.
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Proposition 10. Let a be a real octonion. Suppose that « is a zero of [ of
multiplicity s and a zero of g of multiplicity t (s and t possibly zero). Then «
is a zero of f * g of multiplicity s +t.

Proof. If the real polynomial w — « divides f or g, then it divides f % g. In
particular, 7, (f * g) = 0. Moreover, if f = (w — a)*hy and g = (w — a)ths
with hi(a) # 0 and ha(a) # 0, then f* g = (w — )Tt (hy * hy). It remains
to prove that (w — )*T**1 | f x g. By density, this is equivalent to show that
w— a t hy * hg, ie. (hy * ha)(a) # 0. But (hy * he)(a) = 0 would imply
that N(hy * ha)(a) = N(h1)(a) - N(h2)(«) = 0. On the other hand, since «
is real, N(h1)(a) = |h1(a)]®* # 0 and N(h2)(a) = |ha(a)|?> # 0, which is a
contradiction. O

4 Applications

We begin with an octonionic version of the fundamental theorem of algebra.

Theorem 11 (Fundamental theorem of algebra). If f is a regular octonionic
polynomial of degree n > 0, then its zero set V(f) is non—empty and the car-
dinality k of the distinct conjugacy classes of elements of V(f) is less than
or equal to n. More precisely, if a1,...,a, are the distinct real zeros of f,
Qrigl, -, Qprtq are the distinct isolated zeros of f and opqiy1, ..., Qryirs are
pairwise non—conjugate spherical zeros of f such that U;Zl Sa,yiy, 8 the set of
all spherical zeros of f, then k =r + i+ s and the following equality holds:

k
> myslag) =n.
j=1

In particular, we have that v + i + 2s < n.

Proof. The normal polynomial N (f) is a real polynomial of degree 2n. Let I € S.
Then the set Vi(N(f)) := {2z € Cr | N(f)(z) = 0} = Cr NU,ev () Sa is non-
empty and contains at most 2n elements. Corollary [ tells that V(f) NS, # 0
for every « such that V7 (N(f)) NS, # 0. Therefore, V(f) is non—empty.

If f = Ayh+ wa + b for some regular function h and a,b € Q, then f =
A, h+wa+b. This implies that an isolated zero o = —ba~! of f, with my(a) = s,
corresponds to an isolated zero & = —ba~! € S, of f with the same multiplicity.
From Theorem [(3), we get that o is a spherical zero of N(f) = f * f of
multiplicity 2s. The same property holds for spherical and real zeros of f.
Then, given aq,...,ax as in the statement of the theorem, it follows that

k k
2me(o¢j) = ZmN(f)(aj) = 2n.
j=1

Jj=1

Since the multiplicity of a spherical zero is at least 2, it follows immediately
that » + ¢ + 2s < n. The proof is complete. O
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A repeated application of the division lemma (see Remark [IJ), of Theorem
and of Theorem 1] gives:

Corollary 12 (Factorization lemma). Let f be a regular octonionic polynomial
of degree n > 0. Let a1 € V(f). Then there exist aa,...,an,c € QO with ¢ # 0
such that f factors as follows:

fw) = (w—aq) * fi(w), where
fr(w) : (U/—ak-i-l) ferr1(w) fork=1,2,...,n—2 and
fr—1(w) : = (w — am) *
k=

Moreover, for every — 1, agy1 is a zero of fi, and it is conjugate to
a zero oy, of f. O

Remark 4. Theorem [ tells how to obtain the zeros aj_ , € V(f) from the set
{Oéi}i:Q ..... n-

A standard application of the fundamental theorem of algebra in the com-
plex field is the uniqueness of monic polynomials with prescribed zeros. On the
quaternions and on the octonions, a new phenomenon appears. The multiplici-
ty of an isolated zero of the sum of two regular functions can be strictly less
than those of the functions. This fact implies that two different monic polyno-
mials can have the same zeros with the same multiplicities. For example, the
polynomials f(w) = (w — i) * (w — %) and g(w) = (w — %) * (w — j) have the
unique isolated zero w = ¢ with multiplicity 2, while the difference f — g has a
simple zero ¢. This fact cannot happen when all the zeros are real or spherical
or simple, since in this case

My ig(a) > min{my(a), mg(a)}.

On the quaternions, the existence of a unique monic regular polynomial
with assigned pairwise non—conjugate zeros was proved by Beck [I] (see also [3],
[2] and [I6]). On the octonions, it was recently proved by Serddio [28]. The
existence of an infinite numbers of monic regular quaternionic polynomials with
prescribed multiple isolated zeros was proved by Beck [I].

An immediate consequence of the fundamental theorem and Propositions
Bl [ is the following result, which generalizes the one proved by Lam in the
quaternionic case (cf. [22] §16.19]):

Corollary 13. Let f(w) = Y.i,w'a; be a regular octonionic polynomial of
degree n > 0. The following statements hold.

(1) If the coefficients aq,...,a, are real and ag is non-real, then f has only
isolated zeros.

(2) Ifas,...,an are real and either ag or ay is non—real, then f has no spher-
tcal zeros.

In particular, the set V(f) contains exactly n elements, counted with their mul-
tiplicities. O
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Ezample 2. To illustrate the situation described by the preceding corollary, we
consider the polynomial f(w) = w? + wi + j. Since N(f) = w* + w? + 1,
Uaev(s) Sa is equal to S5 US,, where (3 := 3+ z@ and v := —3 + z‘/Tg The
corresponding remainders are

ro(f) =wl +i) = (1 =j) and 7y (f) = w(=1+17) - (1-7),

which give the following two simple isolated zeros of f: a; = %(1—i—j—ij) €Sp
and ag = $(—1—i+j—ij) €S,.
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