340 research outputs found

    Remote sensing for optimal estimation of water temperature dynamics in shallow tidal environments

    Get PDF
    Given the increasing anthropogenic pressures on lagoons, estuaries, and lakes and considering the highly dynamic behavior of these systems, methods for the continuous and spatially distributed retrieval of water quality are becoming vital for their correct monitoring and management. Water temperature is certainly one of the most important drivers that influence the overall state of coastal systems. Traditionally, lake, estuarine, and lagoon temperatures are observed through point measurements carried out during field campaigns or through a network of sensors. However, sporadic measuring campaigns or probe networks rarely attain a density sufficient for process understanding, model development/validation, or integrated assessment. Here, we develop and apply an integrated approach for water temperature monitoring in a shallow lagoon which incorporates satellite and in-situ data into a mathematical model. Specifically, we use remote sensing information to constrain large-scale patterns of water temperature and high-frequency in situ observations to provide proper time constraints. A coupled hydrodynamic circulation-heat transport model is then used to propagate the state of the system forward in time between subsequent remote sensing observations. Exploiting the satellite data high spatial resolution and the in situ measurements high temporal resolution, the model may act a physical interpolator filling the gap intrinsically characterizing the two monitoring techniques

    Consideration of the Mechanisms for Tidal Bore Formation in an Idealized Planform Geometry

    Get PDF
    A tidal bore is a positive wave traveling upstream along the estuary of a river, generated by a relatively rapid rise of the tide, often enhanced by the funneling shape of the estuary. The swell produced by the tide grows and its front steepens as the flooding tide advances inland, promoting the formation of a sharp front wave, i.e., the tidal bore. Because of the many mechanisms and conditions involved in the process, it is difficult to formulate an effective criterion to predict the bore formation. In this preliminary analysis, aimed at bringing out the main processes and parameters that control tidal bore formation, the degrees of freedom of the problem are largely reduced by considering a rectangular channel of constant width with uniform flow, forced downstream by rising the water level at a constant rate. The framework used in this study is extremely simple, yet the problem is still complex and the solution is far from being trivial. From the results of numerical simulations, three distinctive behaviors emerged related to conditions in which a tidal bore forms, a tidal bore does not form, and a weak bore forms; the latter has a weakly steep front and after the bore formed it rapidly vanishes. Based on these behaviors, some criteria to predict the bore formation are proposed and discussed. The more effective criterion, suitably rearranged, is checked against data from real estuaries and the predictions are found to compare favorably with the available data

    Lipoblastoma: Uma entidade clĂ­nico-morfolĂłgica distinta

    Get PDF
    Lipoblastoma: Uma entidade clĂ­nico-morfolĂłgica distint

    A Cosmic Microwave Background Lensing Mass Map and Its Correlation with the Cosmic Infrared Background

    Get PDF
    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~4σ level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 deg2 at wavelengths of 500, 350, and 250 ÎŒm. We show that these submillimeter (submm) wavelength maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7σ to 8.8σ. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b = 1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps

    Influence of Bed Roughness on Flow and Turbulence Structure Around a Partially-Buried, Isolated Freshwater Mussel

    Get PDF
    The present study uses eddy-resolving numerical simulations to investigate how bed roughness affects flow and turbulence structure around an isolated, partially-buried mussel (Unio elongatulus) aligned with the incoming flow. The rough-bed simulations resolve the flow past the exposed part of a gravel bed, whose surface is obtained from a laboratory experiment that also provides some additional data for validation of the numerical model. Results are also discussed for the limiting case of a horizontal smooth bed. Additionally, the effects of varying the level of burial of the mussel inside the substrate and the discharge through the two mussel siphons are investigated via a set of simulations in which the ratio between the median diameter of the (gravel) particles forming the rough bed, d50, and the height of the exposed part of the mussel, h, varies between 0.10 and 0.22. The increase of the bed roughness is associated with a strong amplification of the turbulence kinetic energy in the near-wake region. Increasing the bed roughness and/or reducing h intensifies the interactions of the eddies generated by the bed particles with the base and tip vortices induced by the active filtering and by the mussel shell, respectively, which, in turn, induces a more rapid dissipation of these vortices. Increasing the bed roughness also reduces the strength of the main downwelling flow region forming in the wake. The strong downwelling near the symmetry plane is the main reason why the symmetric wake shedding mode dominates in the smooth bed simulations with negligible active filtering. By contrast, the anti-symmetric wake shedding mode dominates in the simulations conduced with a high value of the bed roughness. The mean streamwise drag force coefficient for the emerged part of the shell and the dilution of the excurrent siphon jet increase with increasing bed roughness

    The Herschel Stripe 82 Survey (HerS): maps and early catalog

    Get PDF
    We present the first set of maps and band-merged catalog from the Herschel Stripe 82 Survey (HerS). Observations at 250, 350, and 500ÎŒm were taken with the Spectral and Photometric Imaging Receiver instrument aboard the Herschel Space Observatory. HerS covers 79deg 2 along the SDSS Stripe 82 to an average depth of 13.0, 12.9, and 14.8mJybeam −1 (including confusion) at 250, 350, and 500ÎŒm, respectively. HerS was designed to measure correlations with external tracers of the dark matter density field—either point-like (i.e., galaxies selected from radio to X-ray) or extended (i.e., clusters and gravitational lensing)—in order to measure the bias and redshift distribution of intensities of infrared-emitting dusty star-forming galaxies and active galactic nuclei. By locating HerS in Stripe 82, we maximize the overlap with available and upcoming cosmological surveys. The band-merged catalog contains 3.3 × 10 4 sources detected at a significance of ?3σ (including confusion noise). The maps and catalog are available at http://www.astro.caltech.edu/hers/

    SANEPIC: A Map-Making Method for Timestream Data From Large Arrays

    Get PDF
    We describe a map-making method which we have developed for the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our method uses a Maximum Likelihood based approach, with several approximations, which allows images to be constructed using large amounts of data with fairly modest computer memory and processing requirements. This new approach, Signal And Noise Estimation Procedure Including Correlations (SANEPIC), builds upon several previous methods, but focuses specifically on the regime where there is a large number of detectors sampling the same map of the sky, and explicitly allowing for the the possibility of strong correlations between the detector timestreams. We provide real and simulated examples of how well this method performs compared with more simplistic map-makers based on filtering. We discuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance matrix is computed; and an iterative approach, which is much more efficient for large maps. SANEPIC has been successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related results available at http://blastexperiment.info/ [the BLAST Webpage
    • 

    corecore