146 research outputs found

    Does Scientific Progress Consist in Increasing Knowledge or Understanding?

    Get PDF
    Bird argues that scientific progress consists in increasing knowledge. DellsĂ©n objects that increasing knowledge is neither necessary nor sufficient for scientific progress, and argues that scientific progress rather consists in increasing understanding. DellsĂ©n also contends that unlike Bird’s view, his view can account for the scientific practices of using idealizations and of choosing simple theories over complex ones. I argue that DellsĂ©n’s criticisms against Bird’s view fail, and that increasing understanding cannot account for scientific progress, if acceptance, as opposed to belief, is required for scientific understanding

    'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom

    Get PDF
    Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter

    What is theoretical progress of science?

    Get PDF
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally construed as the claim that science makes theoretical progress. Some prominent realist positions (regarding fundamental physics, in particular) are best understood in terms of commitment to theoretical progress that cannot be equated with accumulation of scientific knowledge

    Lines of Descent: Kuhn and Beyond

    Get PDF
    yesThomas S. Kuhn is famous both for his work on the Copernican Revolution and his ‘paradigm’ view of scientific revolutions. But Kuhn later abandoned the notion of paradigm (and related notions) in favour of a more ‘evolutionary’ view of the history of science. Kuhn’s position therefore moved closer to ‘continuity’ models of scientific progress, for instance ‘chain-of-reasoning’ models, originally championed by D. Shapere. The purpose of this paper is to contribute to the debate around Kuhn’s new ‘developmental’ view and to evaluate these competing models with reference to some major innovations in the history of cosmology, from Copernicanism to modern cosmology. This evaluation is made possible through some unexpected overlap between Kuhn’s earlier discontinuity model and various versions of the later continuity models. It is the thesis of this paper that the ‘chain-of-reasoning’ model accounts better for the cosmological evidence than both Kuhn’s early paradigm model and his later developmental view of the history of science

    Automated Computational Detection of Disease Activity in ANCA-Associated Glomerulonephritis Using Raman Spectroscopy: A Pilot Study

    Get PDF
    Biospectroscopy offers the ability to simultaneously identify key biochemical changes in tissue associated with a given pathological state to facilitate biomarker extraction and automated detection of key lesions. Herein, we evaluated the application of machine learning in conjunction with Raman spectroscopy as an innovative low-cost technique for the automated computational detection of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephritis (AAGN). Consecutive patients with active AAGN and those in disease remission were recruited from a single UK centre. In those with active disease, renal biopsy samples were collected together with a paired urine sample. Urine samples were collected immediately prior to biopsy. Amongst those in remission at the time of recruitment, archived renal tissue samples representative of biopsies taken during an active disease period were obtained. In total, twenty-eight tissue samples were included in the analysis. Following supervised classification according to recorded histological data, spectral data from unstained tissue samples were able to discriminate disease activity with a high degree of accuracy on blind predictive modelling: F-score 95% for >25% interstitial fibrosis and tubular atrophy (sensitivity 100%, specificity 90%, area under ROC 0.98), 100% for necrotising glomerular lesions (sensitivity 100%, specificity 100%, area under ROC 1) and 100% for interstitial infiltrate (sensitivity 100%, specificity 100%, area under ROC 0.97). Corresponding spectrochemical changes in paired urine samples were limited. Future larger study is required, inclusive of assigned variables according to novel non-invasive biomarkers as well as the application of forward feature extraction algorithms to predict clinical outcomes based on spectral features

    Distinguishing active from quiescent disease in ANCA-associated vasculitis using attenuated total reflection Fourier-transform infrared spectroscopy

    Get PDF
    Abstract: The current lack of a reliable biomarker of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA) associated vasculitis poses a significant clinical unmet need when determining relapsing or persisting disease. In this study, we demonstrate for the first time that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy offers a novel and functional candidate biomarker, distinguishing active from quiescent disease with a high degree of accuracy. Paired blood and urine samples were collected within a single UK centre from patients with active disease, disease remission, disease controls and healthy controls. Three key biofluids were evaluated; plasma, serum and urine, with subsequent chemometric analysis and blind predictive model validation. Spectrochemical interrogation proved plasma to be the most conducive biofluid, with excellent separation between the two categories on PC2 direction (AUC 0.901) and 100% sensitivity (F-score 92.3%) for disease remission and 85.7% specificity (F-score 92.3%) for active disease on blind predictive modelling. This was independent of organ system involvement and current ANCA status, with similar findings observed on comparative analysis following successful remission-induction therapy (AUC > 0.9, 100% sensitivity for disease remission, F-score 75%). This promising technique is clinically translatable and warrants future larger study with longitudinal data, potentially aiding earlier intervention and individualisation of treatment

    The influence of training load, exposure to match play and sleep duration on daily wellbeing measures in youth athletes

    Get PDF
    This study assessed the influence of training load, exposure to match play and sleep duration on two daily wellbeing measures in youth athletes. Forty-eight youth athletes (age 17.3 ± 0.5 years) completed a daily wellbeing questionnaire (DWB), the Perceived Recovery Status scale (PRS), and provided details on the previous day’s training loads (TL) and self-reported sleep duration (sleep) every day for 13 weeks (n = 2727). Linear mixed models assessed the effect of TL, exposure to match play and sleep on DWB and PRS. An increase in TL had a most likely small effect on muscle soreness (d = −0.43;± 0.10) and PRS (d = −0.37;± 0.09). Match play had a likely small additive effect on muscle soreness (d = −0.26;± 0.09) and PRS (d = −0.25;± 0.08). An increase in sleep had a most likely moderate effect on sleep quality (d = 0.80;± 0.14); a most likely small effect on DWB (d = 0.45;± 0.09) and fatigue (d = 0.42;± 0.11); and a likely small effect on PRS (d = 0.25;± 0.09). All other effects were trivial or did not reach the pre-determined threshold for practical significance. The influence of sleep on multiple DWB subscales and the PRS suggests that practitioners should consider the recovery of an athlete alongside the training stress imposed when considering deviations in wellbeing measures
    • 

    corecore