17,633 research outputs found

    A Search for Intrinsic Polarization in O Stars with Variable Winds

    Get PDF
    New observations of 9 of the brightest northern O stars have been made with the Breger polarimeter on the 0.9~m telescope at McDonald Observatory and the AnyPol polarimeter on the 0.4~m telescope at Limber Observatory, using the Johnson-Cousins UBVRI broadband filter system. Comparison with earlier measurements shows no clearly defined long-term polarization variability. For all 9 stars the wavelength dependence of the degree of polarization in the optical range can be fit by a normal interstellar polarization law. The polarization position angles are practically constant with wavelength and are consistent with those of neighboring stars. Thus the simplest conclusion is that the polarization of all the program stars is primarily interstellar. The O stars chosen for this study are generally known from ultraviolet and optical spectroscopy to have substantial mass loss rates and variable winds, as well as occasional circumstellar emission. Their lack of intrinsic polarization in comparison with the similar Be stars may be explained by the dominance of radiation as a wind driving force due to higher luminosity, which results in lower density and less rotational flattening in the electron scattering inner envelopes where the polarization is produced. However, time series of polarization measurements taken simultaneously with H-alpha and UV spectroscopy during several coordinated multiwavelength campaigns suggest two cases of possible small-amplitude, periodic short-term polarization variability, and therefore intrinsic polarization, which may be correlated with the more widely recognized spectroscopic variations.Comment: LaTeX2e, 22 pages including 11 tables; 12 separate gif figures; uses aastex.cls preprint package; accepted by The Astronomical Journa

    Investigation of fast initialization of spacecraft bubble memory systems

    Get PDF
    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated

    Economic Impacts of Aquatic Vegetation to Angling in Two South Carolina Reservoirs

    Get PDF
    Angler creel surveys and economic impact models were used to evaluate potential expansion of aquatic vegetation in Lakes Murray and Moultrie, South Carolina. (PDF contains 4 pages.

    Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework

    Get PDF
    We present an ab initio symmetry-adapted no-core shell-model description for 6^{6}Li. We study the structure of the ground state of 6^{6}Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to q∼4q \sim 4 fm−1^{-1}. We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E2 and M1 reduced transition probabilities, as well as point-nucleon matter rms radii.Comment: 10 pages, 7 figures; accepted to Physical Review

    Multi-Behavioral Endpoint Testing Of An 87-Chemical Compound Library In Freshwater Planarians

    Get PDF
    There is an increased recognition in the field of toxicology of the value of medium-to-high-throughput screening methods using in vitro and alternative animal models. We have previously introduced the asexual freshwater planarian Dugesia japonica as a new alternative animal model and proposed that it is particularly well-suited for the study of developmental neurotoxicology. In this paper, we discuss how we have expanded and automated our screening methodology to allow for fast screening of multiple behavioral endpoints, developmental toxicity, and mortality. Using an 87-compound library provided by the National Toxicology Program (NTP), consisting of known and suspected neurotoxicants, including drugs, flame retardants, industrial chemicals, polycyclic aromatic hydrocarbons (PAHs), pesticides and presumptive negative controls, we further evaluate the benefits and limitations of the system for medium-throughput screening, focusing on the technical aspects of the system. We show that, in the context of this library, planarians are the most sensitive to pesticides with 16/16 compounds causing toxicity and the least sensitive to PAHs, with only 5/17 causing toxicity. Furthermore, while none of the presumptive negative controls were bioactive in adult planarians, 2/5, acetaminophen and acetylsalicylic acid, were bioactive in regenerating worms. Notably, these compounds were previously reported as developmentally toxic in mammalian studies. Through parallel screening of adults and developing animals, planarians are thus a useful model to detect such developmental-specific effects, which was observed for 13 chemicals in this library. We use the data and experience gained from this screen to propose guidelines for best practices when using planarians for toxicology screens

    Generalization Gap in Amortized Inference

    Get PDF
    The ability of likelihood-based probabilistic models to generalize to unseen data is central to many machine learning applications such as lossless compression. In this work, we study the generalization of a popular class of probabilistic model - the Variational Auto-Encoder (VAE). We discuss the two generalization gaps that affect VAEs and show that overfitting is usually dominated by amortized inference. Based on this observation, we propose a new training objective that improves the generalization of amortized inference. We demonstrate how our method can improve performance in the context of image modeling and lossless compression
    • …
    corecore