51 research outputs found

    Adaptation and conservation insights from the koala genome

    Get PDF
    The koala, the only extant species of the marsupial family Phascolarctidae, is classified as ‘vulnerable’ due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala’s ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala’s survival in the wild

    Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1

    Get PDF
    Background: Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results: We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion: Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences

    Landscape of DNA methylation on the marsupial x

    Get PDF
    DNA methylation plays a key role in maintaining transcriptional silence on the inactive X chromosome of eutherian mammals. Beyond eutherians, there are limited genome wide data on DNA methylation from other vertebrates. Previous studies of X borne genes in various marsupial models revealed no differential DNA methylation of promoters between the sexes, leading to the conclusion that CpG methylation plays no role in marsupial X-inactivation. Using reduced representation bisulfite sequencing, we generated male and female CpG methylation profiles in four representative vertebrates (mouse, gray short-tailed opossum, platypus, and chicken). A variety of DNA methylation patterns were observed. Platypus and chicken displayed no large-scale differential DNA methylation between the sexes on the autosomes or the sex chromosomes. As expected, a metagene analysis revealed hypermethylation at transcription start sites (TSS) of genes subject to X-inactivation in female mice. This contrasted with the opossum, in which metagene analysis did not detect differential DNA methylation between the sexes at TSSs of genes subject to X-inactivation. However, regions flanking TSSs of these genes were hypomethylated. Our data are the first to demonstrate that, for genes subject to X-inactivation in both eutherian and marsupial mammals, there is a consistent difference between DNA methylation levels at TSSs and immediate flanking regions, which we propose has a silencing effect in both groups.This work was funded by Australian Research Council Discovery Projects DP0987091 and DP1094868

    Adaptation and conservation insights from the koala genome

    Get PDF
    The koala, the only extant species of the marsupial family Phascolarctidae, is classified as ‘vulnerable’ due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala’s ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala’s survival in the wild

    Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?

    Get PDF
    Background Unlike the chromosome constitution of most snakes (2n=36), the cobra karyotype shows a diploid chromosome number of 38 with a highly heterochromatic W chromosome and a large morphologically different chromosome 2. To investigate the process of sex chromosome differentiation and evolution between cobras, most snakes, and other amniotes, we constructed a chromosome map of the Siamese cobra (Naja kaouthia) with 43 bacterial artificial chromosomes (BACs) derived from the chicken and zebra finch libraries using the fluorescence in situ hybridization (FISH) technique, and compared it with those of the chicken, the zebra finch, and other amniotes. Results We produced a detailed chromosome map of the Siamese cobra genome, focusing on chromosome 2 and sex chromosomes. Synteny of the Siamese cobra chromosome 2 (NKA2) and NKAZ were highly conserved among snakes and other squamate reptiles, except for intrachromosomal rearrangements occurring in NKA2. Interestingly, twelve BACs that had partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic NKAW as hybridization signals such as repeat sequences. Sequence analysis showed that most of these BACs contained high proportions of transposable elements. In addition, hybridization signals of telomeric repeat (TTAGGG)n and six microsatellite repeat motifs ((AAGG)8, (AGAT)8, (AAAC)8, (ACAG)8, (AATC)8, and (AAAAT)6) were observed on NKAW, and most of these were also found on other amniote sex chromosomes. Conclusions The frequent amplification of repeats might involve heterochromatinization and promote sex chromosome differentiation in the Siamese cobra W sex chromosome. Repeat sequences are also shared among amniote sex chromosomes, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial syntenies. Alternatively, amplification of microsatellite repeat motifs could have occurred independently in each lineage, representing convergent sex chromosomal differentiation among amniote sex chromosomes

    Is the karyotype of neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family

    Get PDF
    Boids are primitive snakes from a basal lineage that is widely distributed in Neotropical region. Many of these species are both morphologically and biogeographically divergent, and the relationship among some species remains uncertain even with evolutionary and phylogenetic studies being proposed for the group. For a better understanding of the evolutionary relationship between these snakes, we cytogenetically analysed 7 species and 3 subspecies of Neotropical snakes from the Boidae family using different chromosomal markers. The karyotypes of Boa constrictor occidentalis, Corallus hortulanus, Eunectes notaeus, Epicrates cenchria and Epicrates assisi are presented here for the first time with the redescriptions of the karyotypes of Boa constrictor constrictor, B. c. amarali, Eunectes murinus and Epicrates crassus. The three subspecies of Boa, two species of Eunectes and three species of Epicrates exhibit 2n = 36 chromosomes. In contrast, C. hortulanus presented a totally different karyotype composition for the Boidae family, showing 2n = 40 chromosomes with a greater number of macrochromosomes. Furthermore, chromosomal mapping of telomeric sequences revealed the presence of interstitial telomeric sites (ITSs) on many chromosomes in addition to the terminal markings on all chromosomes of all taxa analysed, with the exception of E. notaeus. Thus, we demonstrate that the karyotypes of these snakes are not as highly conserved as previously thought. Moreover, we provide an overview of the current cytotaxonomy of the group. © 2016 Viana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Get PDF
    Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in rayfinned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.Radmila Hrdličková, Jiří Nehyba, Shu Ly Lim, Frank Grützner, Henry R Bose J
    corecore