23 research outputs found

    Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial

    Get PDF
    Considerable ambiguity remains over the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results with an intensively dated Italian speleothem record and climate-model experiments. The strongest expression of climate variability occurred during the transitions into and out of the LIG. Our records also document a series of multi-centennial intra-interglacial arid events in southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial and temporal fingerprints of these changes indicate a reorganization of ocean surface circulation, consistent with low-intensity disruptions of the Atlantic meridional overturning circulation (AMOC). The amplitude of this LIG variability is greater than that observed in Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may have contributed to AMOC weakening and increased climate instability throughout the LIG

    Interglacials of the last 800,000 years

    Get PDF
    Interglacials, including the present (Holocene) period, are warm, low land ice extent (high sea level), end‐members of glacial cycles. Based on a sea level definition, we identify eleven interglacials in the last 800,000 years, a result that is robust to alternative definitions. Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (last interglacial) and 11c (~400 ka ago) were globally strong (warm), while MIS 13a (~500 ka ago) was cool at many locations. A step change in strength of interglacials at 450 ka is apparent only in atmospheric CO2 and in Antarctic and deep ocean temperature. The onset of an interglacial (glacial termination) seems to require a reducing precession parameter (increasing Northern Hemisphere summer insolation), but this condition alone is insufficient. Terminations involve rapid, nonlinear, reactions of ice volume, CO2, and temperature to external astronomical forcing. The precise timing of events may be modulated by millennial‐scale climate change that can lead to a contrasting timing of maximum interglacial intensity in each hemisphere. A variety of temporal trends is observed, such that maxima in the main records are observed either early or late in different interglacials. The end of an interglacial (glacial inception) is a slower process involving a global sequence of changes. Interglacials have been typically 10-30 ka long. The combination of minimal reduction in northern summer insolation over the next few orbital cycles, owing to low eccentricity, and high atmospheric greenhouse gas concentrations implies that the next glacial inception is many tens of millennia in the future

    Interglacials of the last 800,000 years

    Get PDF
    Interglacials, including the present (Holocene) period, are warm, low land ice extent (high sea level), end-members of glacial cycles. Based on a sea level definition, we identify eleven interglacials in the last 800,000 years, a result that is robust to alternative definitions. Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (last interglacial) and 11c (~400 ka ago) were globally strong (warm), while MIS 13a (~500 ka ago) was cool at many locations. A step change in strength of interglacials at 450 ka is apparent only in atmospheric CO2_{2} and in Antarctic and deep ocean temperature. The onset of an interglacial (glacial termination) seems to require a reducing precession parameter (increasing Northern Hemisphere summer insolation), but this condition alone is insufficient. Terminations involve rapid, nonlinear, reactions of ice volume, CO2_{2}, and temperature to external astronomical forcing. The precise timing of events may be modulated by millennial-scale climate change that can lead to a contrasting timing of maximum interglacial intensity in each hemisphere. A variety of temporal trends is observed, such that maxima in the main records are observed either early or late in different interglacials. The end of an interglacial (glacial inception) is a slower process involving a global sequence of changes. Interglacials have been typically 10–30 ka long. The combination of minimal reduction in northern summer insolation over the next few orbital cycles, owing to low eccentricity, and high atmospheric greenhouse gas concentrations implies that the next glacial inception is many tens of millennia in the future.This paper arose as a result of a succession of workshops of the Past Interglacials Group (PIGS), sponsored by the Past Global Changes Project (PAGES). The authors acknowledge the contributions of all participants at those workshops, of whom the listed authors are only a subset. Numerous funding agencies have contributed to the work of this paper including NSF (USA), NERC and The Royal Society (UK), F.R.S –FNRS (Belgium), and SNF (Switzerland). Most data described in this paper are available through relevant data repositories, http://www.ncdc.noaa.gov/data-access/paleoclimatology-data and www.pangaea.de in particular. In addition, the datasets from which Tables 2 and 3 were derived have been compiled into a spreadsheet as a supplement to this paper. Insolation data for Figure 5 can be calculated using programs available at ftp://ftp.elic.ucl.ac.be/berger/berger78/ and ftp://ftp.elic.ucl.ac.be/berger/ellipticintegrals/.  This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015RG00048

    Ensemble and fuzzy techniques applied to imbalanced traffic congestion datasets a comparative study

    Get PDF
    Class imbalance is among the most persistent complications which may confront the traditional supervised learning task in real-world applications. Among the different kind of classification problems that have been studied in the literature, the imbalanced ones, particularly those that represents real-world problems, have attracted the interest of many researchers in recent years. In order to face this problems, different approaches have been used or proposed in the literature, between then, soft computing and ensemble techniques. In this work, ensembles and fuzzy techniques have been applied to real-world traffic datasets in order to study their performance in imbalanced real-world scenarios. KEEL platform is used to carried out this study. The results show that different ensemble techniques obtain the best results in the proposed datasets. Document type: Part of book or chapter of boo

    Searching for Freedoms

    No full text

    Multi-objective optimization for photonic systems with advanced functionalities and improved performance

    No full text
    The development of photonic system realizing advanced functionalities on-chip requires the careful integration of a large number of reliable and high-performance components. Novel approaches such as non-trivial geometries and metamaterials are required to achieve these targets. As a consequence, new design tools capable of handling a large number of correlated parameters are required. Moreover, multiple figures of merit must be considered simultaneously to evaluate the performance of the selected devices end unsure appropriate system integration. Here, we will discuss the potentiality offered by the combination of machine learning dimensionality reduction and optimization in tackling the multi-objective design of photonic devices as well as for the investigation of the effect of fabrication tolerances
    corecore