280 research outputs found

    Coccidioides posadasii infection alters the expression of pulmonary surfactant proteins (SP)-A and SP-D

    Get PDF
    BACKGROUND: Coccidioidomycosis or Valley Fever is caused by Coccidioides in Southwest US and Central America. Primary pulmonary infection is initiated by inhalation of air-borne arthroconidia. Since, lung is the first organ that encounters arthroconidia, different components of the pulmonary innate immune system may be involved in the regulation of host defense. Pulmonary surfactant proteins (SP)-A and SP-D have been recognized to play an important role in binding and phagocytosis of various microorganisms, but their roles in Coccidioides infection are not known. METHODS: In this study, we studied the changes in amounts of pulmonary SP-A, SP-D and phospholipid in murine model of Coccidioides posadasii infection, and binding of SP-A and SP-D to Coccidioidal antigens. Mice were challenged intranasally with a lethal dose of C. posadasii (n = 30 arthroconidia) and bronchoalveolar lavage fluid (BALF) samples were collected on day 10, post infection. In another group of animals, mice were immunized with protective formalin killed spherule (FKS) vaccine prior to infection. The concentrations of BALF SP-A, SP-D, total phospholipid were measured using enzyme linked immunosorbent assay and biochemical assays. RESULTS: We found that in lavage fluid samples of C. posadasii infected mice, the concentrations of total phospholipid, SP-A and SP-D were 17 % (SEM 3.5, p < 0.001), 38 % (SEM 5.8, p < 0.001) and 4 % (SEM 1.3, p < 0.001) of those in lavage fluid samples of non-infected control mice, respectively. However, the concentrations of SP-A and SP-D remained unchanged in BALF samples of C. posadasii protected mice after immunization with FKS vaccine. Also, we found that both SP-A and SP-D bind to Coccidiodal antigens. CONCLUSION: Our results suggest that the C. posadasii infection perturbs the pulmonary SP-A, SP-D, and phospholipids, potentially enabling the disease progression and promoting fungal dissemination

    Inductive learning spatial attention

    Get PDF
    This paper investigates the automatic induction of spatial attention from the visual observation of objects manipulated on a table top. In this work, space is represented in terms of a novel observer-object relative reference system, named Local Cardinal System, defined upon the local neighbourhood of objects on the table. We present results of applying the proposed methodology on five distinct scenarios involving the construction of spatial patterns of coloured blocks

    Multi-platform Approach for Microbial Biomarker Identification Using Borrelia burgdorferi as a Model

    Get PDF
    The identification of microbial biomarkers is critical for the diagnosis of a disease early during infection. However, the identification of reliable biomarkers is often hampered by a low concentration of microbes or biomarkers within host fluids or tissues. We have outlined a multi-platform strategy to assess microbial biomarkers that can be consistently detected in host samples, using Borrelia burgdorferi, the causative agent of Lyme disease, as an example. Key aspects of the strategy include the selection of a macaque model of human disease, in vivo Microbial Antigen Discovery (InMAD), and proteomic methods that include microbial biomarker enrichment within samples to identify secreted proteins circulating during infection. Using the described strategy, we have identified 6 biomarkers from multiple samples. In addition, the temporal antibody response to select bacterial antigens was mapped. By integrating biomarkers identified from early infection with temporal patterns of expression, the described platform allows for the data driven selection of diagnostic targets

    Cold Induces Micro- and Nano-Scale Reorganization of Lipid Raft Markers at Mounds of T-Cell Membrane Fluctuations

    Get PDF
    Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4°C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules

    Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process

    Get PDF
    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin

    Compulsive buying and branding phenomena

    Get PDF
    The purpose of this paper was to explore the impact of brand variables such as brand awareness, brand loyalty, brand attachment, and perceived brand quality on compulsive buying behavior. A self-administered questionnaire, containing demographic items and items related to compulsive buying, brand awareness, brand loyalty, brand attachment and perceived quality, was used to collect data. Participants were 269 US university students at a large mid-western university (138 men, 131 women; mean age = 21.96). Data were analyzed using descriptive statistics, t-test and MANOVA/ANOVA. Reliability of all scales was acceptable. In the current study, 18% of the participants were classified as compulsive buyers. Women showed higher compulsive buying tendency than men. Participants with greater compulsive buying tendency scored higher on brand attachment and brand loyalty and lower on brand awareness; there was no difference in scores on perceived brand quality. Results support that brand variables such as brand awareness, brand loyalty, and brand attachment are related to compulsive buying behavior. New perceptions and implications for both academicians and practitioners are provided

    The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains

    Get PDF
    Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle

    Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes

    Get PDF
    Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites
    corecore