41 research outputs found
Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants
Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice
Current status of the multinational Arabidopsis community
The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community
Current status of the multinational Arabidopsis community
The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community
Cross species multi‐omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants
Boron toxicity is a world-wide problem for crops, yet we have a limited understanding of the genetic responses and adaptive mechanisms to this stress in plants. We employed a cross-species comparison between boron stress-sensitive Arabidopsis thaliana and its boron stress-tolerant extremophyte relative Schrenkiella parvula, and a multi-omics approach integrating genomics, transcriptomics, metabolomics and ionomics to assess plant responses and adaptations to boron stress. Schrenkiella parvula maintains lower concentrations of total boron and free boric acid than Arabidopsis when grown with excess boron. Schrenkiella parvula excludes excess boron more efficiently than Arabidopsis, which we propose is partly driven by SpBOR5, a boron transporter that we functionally characterize in this study. Both species use cell walls as a partial sink for excess boron. When accumulated in the cytoplasm, excess boron appears to interrupt RNA metabolism. The extremophyte S. parvula facilitates critical cellular processes while maintaining the pool of ribose-containing compounds that can bind with boric acid. The S. parvula transcriptome is pre-adapted to boron toxicity. It exhibits substantial overlaps with the Arabidopsis boron-stress responsive transcriptome. Cell wall sequestration and increases in global transcript levels under excess boron conditions emerge as key mechanisms for sustaining plant growth under boron toxicity