101 research outputs found

    Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    Get PDF
    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn´s magnetosphere influences Titan´s ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan´s ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan´s ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from 200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn´s nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan´s ionosphere against the dynamic pressure and energetic particle pressure in Saturn´s magnetosphere.Fil: Edberg, N. J. T.. University of Iowa; Estados Unidos. Swedish Institute of Space Physics; SueciaFil: Andrews, D. J.. Swedish Institute of Space Physics; SueciaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gurnett, D. A.. University of Iowa; Estados UnidosFil: Holmberg, M. K. G.. Swedish Institute of Space Physics; SueciaFil: Jackman, C. M.. University Of Southampton; Reino UnidoFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Menietti, J. D.. University Of Iowa; Estados UnidosFil: Opgenoorth, H. J.. Swedish Institute of Space Physics; SueciaFil: Shebanits, O.. Swedish Institute of Space Physics; SueciaFil: Vigren, E.. Swedish Institute of Space Physics; SueciaFil: Wahlund, J. E.. Swedish Institute of Space Physics; Sueci

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Ionospheric gas dynamics of satellites and diagnostic probes

    Full text link
    The gas dynamics of interactions of a tenuous ionosphere with moving satellites and probes that have bearings on the diagnostics of the ionosphere are discussed. Emphasis is on the cases where the body is moving at mesothermal speeds, namely intermediate between the thermal speeds of ions and electrons of the ambient ionosphere. Methods of collision-free plasma kinetics with self-consistent field are used. The development of the topics for discussion starts with stationary Langmuir probe which entails the basic mechanism of body-plasma interaction that becomes further intricated as the body moves at a higher and higher speed. Applications of the theory of plasma interaction to meteors which move in the ionosphere are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43801/1/11214_2004_Article_BF00212707.pd

    Barodesy for clay

    No full text
    Barodesy is a new hypoplastic frame for constitutive models to describe granular materials. It has already been introduced for sand, and this article adjusts barodesy for clay. Common concepts of soil mechanics, such as critical states, barotropy (i.e. the dependence of stiffness and strength on the stress level), pyknotropy (i.e. the dependence of stiffness and strength on density) and a stress-dilatancy relation can easily be included in the presented model. Despite its mathematical simplicity, barodesy is able to describe many aspects of clay behaviour. Only four material constants are required, which can be determined by means of a single consolidated undrained triaxial test.(VLID)865937Version of recor

    Proportional stress and strain paths in barodesy

    No full text
    Asymptotic behaviour of soil deserves particular attention: If soil is deformed with a proportional strain path, the resulting stress path approaches asymptotically a proportional stress path. In this arcticle, we review existing experimental evidence on this phenomenon and discuss it in the frame of barodesy. Here, the presented relation is a modification of a barodetic expression and includes Jáky's relation, inhibits tensile stress and is able to predict asymptotic stress ratios based on experimental findings. The proposed relation is compared with experimental data as well as with the socalled stressdilatancy relations and other constitutive relations proposed so far.(VLID)1333534Accepted versio

    Conservation of protists : the Krauthugel pond in Austria

    Get PDF
    CITATION: Cotterill, F. P. D. et al. 2013. Conservation of protists : the Krauthugel pond in Austria. Diversity, 5(2):374-392; doi:10.3390/d5020374.The original publication is available at http://www.mdpi.comAlthough constituting more than 100,000 described species, protists are virtually ignored within the arena of biodiversity conservation. One reason is the widespread belief that the majority of protists have cosmopolitan distributions, in contrast to the highly hetereogenous biogeography of the “mega-Metazoa”. However, modern research reveals that about one third of the known protists have restricted distributions, which endorses their conservation, at least in special cases. Here, we report what probably ranks as the first successful conservation intervention focused directly on known protist diversity. It is justified by unique species, type localities, and landscape maintenance as evidence for legislation. The protected habitat comprises an ephemeral pond, which is now a “Natural Monument” for ciliated protozoa. This wetland occupies a natural depression on the Krauthügel (“cabbage hill”) south of the fortress of Salzburg City. When filled, the claviform pond has a size of ~30 × 15 m and a depth rarely surpassing 30 cm. Water is present only for some days or weeks, depending on heavy and/or prolonged rain. The pond occupied an agricultural field where root and leafy vegetables were cultivated for possibly more than 200 years. In the 1960s, this area became a grassland utilized as an autumn pasture, but was abandoned in the 1990s. Repeated sampling between 1982 and 2012 recovered a total of at least 150 ciliate taxa, of which 121 were identified to species level. Eight species were new to science, and an additional 10 poorly known species were reinvestigated and neotypified with populations from the Krauthügel pond. Both endemism and type localities justify the argument that the “integrative approach” in biodiversity and conservation issues should include protists and micro-metazoans. We argue that Krauthügel holds a unique reference node for biodiversity inventories to obtain the baseline knowledge—which is the prerequisite to monitor ecosystem integrity—and detect and evaluate impacts of natural and anthropogenic disturbances.http://www.mdpi.com/1424-2818/5/2/374Publisher's versio

    An improved version of barodesy for clay

    No full text
    Barodesy is a constitutive model based on proportional paths and the asymptotic behaviour of soil. It was originally developed for sand in 2009 by Kolymbas, and a version for clay was introduced in 2012. A shortcoming of former barodetic models was that tensile stresses can occur for certain dilative deformations. In this article, an improved version of barodesy for clay and a simplified calibration procedure are proposed. Basic features are shown, and simulations of element tests are compared with experimental data of several clay types.(VLID)452075
    corecore