1,613 research outputs found

    Discovery of near-Earth asteroids by CCD scanning

    Get PDF
    The found near-Earth asteroid are different objects with peculiar orbits. With the new technique of CCD scanning we entered the domain of the smallest, the fastest, and the closest near-Earth asteroids. The results are presented

    Time-resolved photoluminescence of n-doped SrTiO_3

    Full text link
    Following the recent surge of interest in n-doped strontium titanate as a possible blue light emitter, a time-resolved photoluminescence analysis was performed on nominally pure, Nb-doped and oxygen-deficient single-crystal SrTiO3 samples. The doping-effects on both the electronic states involved in the transition and the decay mechanism are respectively analyzed by comparing the spectral and dynamic features and the yields of the emission. Our time-resolved analysis, besides shedding some light on the basic recombination mechanisms acting in these materials, sets the intrinsic bandwidth limit of the proposed blue light emitting optoelectronic devices made of Ti-based perovskites heterostructures in the GHz range

    Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1? and low oxygen

    Get PDF
    Previous studies showed that human nasal chondrocytes (HNC) exhibit higher proliferation and chondrogenic capacity as compared to human articular chondrocytes (HAC). To consider HNC as a relevant alternative cell source for the repair of articular cartilage defects it is necessary to test how these cells react when exposed to environmental factors typical of an injured joint. We thus aimed this study at investigating the responses of HNC and HAC to exposure to interleukin (IL)-1? and low oxygen. For this purpose HAC and HNC harvested from the same donors (N=5) were expanded in vitro and then cultured in pellets or collagen-based scaffolds at standard (19%) or low oxygen (5%) conditions. Resulting tissues were analyzed after a short (3 days) exposure to IL-1?, mimicking the initially inflammatory implantation site, or following a recovery time (1 or 2 weeks for pellets and scaffolds, respectively). After IL-1? treatment, constructs generated by both HAC and HNC displayed a transient loss of GAG (up to 21.8% and 36.8%, respectively) and, consistently, an increased production of metalloproteases (MMP)-1 and -13. Collagen type II and the cryptic fragment of aggrecan (DIPEN), both evaluated immunohistochemically, displayed a trend consistent with GAG and MMPs production. HNC-based constructs exhibited a more efficient recovery upon IL-1? withdrawal, resulting in a higher accumulation of GAG (up to 2.6-fold) compared to the corresponding HAC-based tissues. On the other hand, HAC displayed a positive response to low oxygen culture, while HNC were only slightly affected by oxygen percentage. Collectively, under the conditions tested mimicking the postsurgery articular environment, HNC retained a tissue-forming capacity, similar or even better than HAC. These results represent a step forward in validating HNC as a cell source for cartilage tissue engineering strategies

    Combined Endo-restorative Treatment of a Traumatized Central Incisor: A Five-year Follow-up

    Get PDF
    Purpose: The management of complicated crown-root fractures is challenging for endodontic restoration. The present case describes a patient who sustained trauma to the maxillary right central incisor. Materials and Methods: Clinical and radiographic examination showed a complicated crown-root fracture and incomplete root development with periapical radiolucency and inadequate endodontic treatment with overfilling. Orthograde retreatment with MTA apical closure combined with a microsurgical approach to remove of extruded material was performed. Coronal sealing was accomplished with a direct adhesive restoration and marginal relocation. Results: A 5-year follow-up showed complete healing of the periapical lesion and correct preservation of function and esthetic parameters. Conclusion: A modern minimally invasive treatment protocol allows the maximum conservation of residual dental tissues

    Predominant-period site classification for response spectra prediction equations in Italy

    Get PDF
    We propose a site-classification scheme based on the predominant period of the site, as determined from the average horizontal-to-vertical (H/V) spectral ratios of ground motion. Our scheme extends Zhao et al.(2006) classifications by adding two classes, the most important of which is defined by flat H/V ratios with amplitudes less than 2. The proposed classification is investigated by using 5%-damped response spectra from Italian earthquake records. We select a dataset of 602 three-component analog and digital recordings from 120 earthquakes recorded at 214 seismic stations within a hypocentral distance of 200 km. Selected events are in the moment-magnituderange 4.0 ≤ Mw ≤ 6.8 and focal depths from a few kilometers to 46 km. We computed H/V ratios for these data and used them to classify each site into one of six classes. We then investigate the impact of this classification scheme on empirical ground-motion prediction equations (GMPEs) by comparing its performance with that of the conventional rock/soil classification. Although the adopted approach results in only a small reduction of the overall standard deviation, the use of H/V spectral ratios in site classification does capture the signature of sites with flat frequency-response, as well as deep and shallow-soil profiles, characterized by long- and short-period resonance, respectively; in addition, the classification scheme is relatively quick and inexpensive, which is an advantage over schemes based on measurements of shear wave velocity

    Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: evidence from optical second harmonic generation

    Full text link
    The so-called "polar catastrophe", a sudden electronic reconstruction taking place to compensate for the interfacial ionic polar discontinuity, is currently considered as a likely factor to explain the surprising conductivity of the interface between the insulators LaAlO3 and SrTiO3. We applied optical second harmonic generation, a technique that a priori can detect both mobile and localized interfacial electrons, to investigating the electronic polar reconstructions taking place at the interface. As the LaAlO3 film thickness is increased, we identify two abrupt electronic rearrangements: the first takes place at a thickness of 3 unit cells, in the insulating state; the second occurs at a thickness of 4-6 unit cells, i.e., just above the threshold for which the samples become conducting. Two possible physical scenarios behind these observations are proposed. The first is based on an electronic transfer into localized electronic states at the interface that acts as a precursor of the conductivity onset. In the second scenario, the signal variations are attributed to the strong ionic relaxations taking place in the LaAlO3 layer
    corecore